Technical Bulletin BT15G012GB-01 # SPINchiller³ High efficiency air-cooled liquid chiller for outdoor installation ## **WSAT-XSC3 90.4-240.4 RANGE** Nominal cooling capacity from 268 kW to 678 kW - ► R-410A multiscroll technology - ► Two independent refrigeration circuit - ▶ Total/partial recovery of the condensing heat ## **EXCELLENCE** version ▶ Eurovent Class A / Up to 52°C outdoor air temperature / Perferct for LEED ## **PREMIUM version** ► Eurovent Class C / Compact version # **Clivet hydronic system** Designed to provide high energy efficiency and sustainability of the investment, the wide range of Clivet liquid chillers and heat pumps for high efficiency air conditioning of Residential and Commercial spaces and for Industrial applications it is available with air or water source. HYDRONIC System - Air Source ## **Specialization** Every intended use has specific requirements which determine the overall efficiency. For this, the Clivet hydronic system always offers the best solution in every project. - Modular range with over 8000 kW of overall capacity - Capacity control with Screw and modular Scroll technology - Multifunction versions - Outdoor or indoor (ductable type) installation ## **Centrality of the Air Renewal** From the Air Renewal depends the comfort in the spaces. Since it often represents the main building energetic load, it also determines the running costs of the entire system. ## ZEPHIR3 Packaged Primary Air supply system with thermodynamic energy recovery. - Simplifies the system, reduces the heating and cooling generators - Purifies the air with standard electronic filters - Increases the energy efficiency and it also allows a savings of 40% on the running costs - From -40°C to +50°C of outdoor air temperature ## Terminal and AHU complete system The hydronic terminal units are very diffused for their versatility and reliability. The Clivet range includes many versions that simplify the application in differents type of installation and building. #### **ELFOSpace** High energy efficiency hydronic terminal units #### **AQX** Air-conditioning unit - Cased and uncased terminal units, from 1 to 90 kW - Horizontal and vertical installation - Energy-saving DC fans - Modular air conditioning units up to 160.000 m³/h - EUROVENT certification # SPINchiller3: modular scroll technology for every application SPINchiller³ is the new generation of Clivet liquid chillers and heat pump with modular scroll technology. Thanks to its high seasonal efficiency and range versatility, it represents the ideal solution for different types of installation. ## **WSAT-XSC3** ## Air cooled water chiller - EXCELLENCE high efficiency version and PREMIUM compact version - Operating with 52°C of outdoor air temperature - Total / partial recovery of the condensing heat - Eurovent certification ## **WSAT-XSC3 FREE-COOLING** ## Air cooled water chiller with FREE-COOLING - Direct FREE-COOLING - Indirect FREE-COOLING (No-Glycol) Dedicated series separately documentated ## **WSAN-XSC3** ## Air coole heat pump - EXCELLENCE high efficiency version - Eurovent certification Dedicated series separately documentated ## **WSAN-XSC3** Multifunction ## Air cooled heat/cool heat pump with simultaneous operating - EXCELLENCE high efficiency version - 4-pipe system - 2-pipe system and total condensing heat recovery Dedicated series separately documentated 3 # **Cost or reliability?** ## The dilemma of modern system engineering applications Air-conditioning systems in trade centres influence both the starting investment and monthly management costs, for the whole of their working lives. This theme is even more relevant in residential applications with centralised systems. Furthermore, maximum working flexibility requirements should be added to that, in serving different users while avoiding wasting energy and thus, money. Finally, there are several industrial applications which require hot or chilled water as service fluid, process fluid or vector fluid for operator comfort and for conserving goods and enabling cycles to function correctly. Furthermore, in all these cases, the working reliability of the system is decisive. # **High efficiency hydronic systems** ## The high efficiency hydronic systems are extremely versatile, reliable and widespread Despite their apparently low costs, split, multi-split and VRF direct expansion systems have a lot of limits in these applications. For example, they require a separate system for primary air treatment. The pipes that contain the refrigerant cross the served rooms and therefore they are subject to restrictions and use limitations. They cannot operate in the FREE-COOLING mode, the high efficiency and convenient mode that allows energy savings. The hydronic systems are certainly more complete and versatile. They make it possible to adopt various types of terminals in the served environment, from fan coil units exposed or integrated in the furnishings, up to radiant or induction systems. They are also irreplaceable in the service and process industrial applications. The main component performances, like air-cooled liquid chillers and hydronic heat pumps, are checked and certificated by appropriate certification programs, as Eurovent. # **Clivet technological evolution** ## Clivet chillers reduce consumption and are compact and reliable With over twenty years of technological evolution, Clivet liquid chillers and heat pumps represent the state of the art in air-conditioning of residential, trade and industrial environments. Their success is based on high energy efficiency, compactness and management maintenance simplicity, with wide versatility in the choice of the most suitable model for the specific use. ## SPINchiller³ ## Provides all Clivet technological developments for their medium capacity hydronic systems High efficiency Scroll compressors, high performance heat exchangers, electronic control fans, fully automatic operation: these are only some of the technologies available with SPINchiller³, in a range of models that are ideal for high capacity air conditioning systems in commercial, residential and industrial buildings. The two available versions allow to choose the best combination between the initial investment and the costs throughout the entire life cycle of the system. - the EXCELLENCE SC version stands out for its extremely high energy efficiency under both part and full load conditions. (A- class Eurovent certification) - the distinctive feature of the PREMIUM version is its compactness and high part-load efficiency. $SPIN chiller ^3 \ can also \ be \ supplied \ in \ many \ configurations \ equipped \ with \ the \ main \ components \ in \ stalled \ built-in.$ # **Advantages** ## High efficiency all year round SPINchiller³ reduces yearly energy consumption thanks to its high part-load efficiency i.e., by far the most frequent condition throughout the system's life-cycle. This way, even the value of the served building increases. The main components are manufactured on an industrial scale, with maximum manufacturing reliability and can be easily found as spare parts. To further increase energy efficiency in a system with several SPINchiller³ units operating on the same equipment, there is the innovative ECOSHARE feature, which automatically distributes the load and activates the necessary pumps. # 4.5 ESEER Seasonal Efficiency # **System simplification** All of the features are provided by Clivet already assembled and tested built-in, differently then other manufacturers who make numerous additional components available to be installed on site. ## **Compact and versatile** Suitable for any type of terminals, from fan coils to radiant systems and chilled beams, SPINchiller³ is also available in Super-silenced configuration. Energy recovery for producing hot water free of charge, FREE-COOLING. Seasonal energy efficiency is further increased with the DST operating logic, which maintains a constant return temperature. ## **Borderless multiscroll technology** With SPINchiller³ the modular scroll compressor technology reaches the best levels of performance and versatility ever, guaranteeing competitiveness in more and more demanding applications. The top class seasonal efficiency rewards SPINchiller³ in comparison to any other air cooled chiller technology. A comparison with three SPINchiller³ competitors such as: - air cooled liquid chillers with magnetic bearing centrifugal compressors - air cooled liquid chillers with modulating capacity screw compressors - air cooled liquid chillers with inverter screw compressors; shows that SPINchiller³ is the best solution, considering its seasonal efficiency similar to the inverter screw chillers and a capital cost lower than that of centrifugal compressor chillers, even considering the capital investment pay back, that for analized technologies are always above acceptable values normally considered for system investment equal to 3 years. Average capital investment for 500 kW installation proportional with scroll technology # **Comfort and energy saving in one solution** ## Maximum efficiency is necessary with a part load The system is required to generate maximum capacity only for a short amount of time. Therefore, it is essential to have the maximum efficiency under part-load conditions. This is the only way to actually reduce overall yearly consumptions. ## Part load efficiency determines the seasonal efficiency Seasonal efficiency is conventionally represented by ESEER parameters according to Eurovent and IPLV parameters according to ARI. Both give great importance to part load operation, since it is the predominant condition. | CARICO IMPIANTO | PESO (ESEER) * | PESO (IPLV) * | |-----------------|----------------|---------------| | 100% | 3% | 1% | | 75% | 33% | 42% | | 50% | 41% | 45% | | 25% | 23% | 12% | ^{*} EUROVENT (ESEER) supply times reference and ARI (IPLV) reference for seasonal efficiency calculations. ## SPINchiller technology
enhances part-load efficiency SPINchiller³ uses high efficiency Scroll compressors. The advantages are: - compressors manufactured in large ranges on an industrial scale with strict quality control inspections and maximum manufacturing reliability thanks to the high production volumes. - every refrigeration circuit uses two Scroll compressors, depending on the different sizes of the unit. When two compressors are used, their sizes are different in order to obtain more control steps. This way, only the necessary energy is supplied. ## **Doubled efficiency** The heat exchange surface is sized for full capacity operation. Under part load condition, some compressors are automatically deactivated. Under this condition, in fact, the compressors in operation make use of a much larger surface. This entails a reduced condensation temperature and an increased evaporation temperature. This way, the compressor capacity consumption is reduced with respect to the yield thereby increasing the overall efficiency of the unit. EERc =Energy efficiency referred to compressors # **Efficient and silent ventilation technology** #### **Advanced aerofoil fans** The external axial fans are equipped with the innovative Winglet airfoil-vane with integrated baffle, able to increase the aerodynamic efficiency. It results in a consumption reduction of the 10% and a medium sound emission lower of 6 dB than the traditional fans. ## **Diffusers for fans** Also the innovative air handling system on the external exchangers is the result of the Clivet design evolution. The new AxiTop diffuser creates an ideal air distribution: it aerodynamically decelerates the flow and transforms a big part of its dynamic energy in static pressure, obtaining: - –3 dB of sound reduction - reduction of 3% of the absorbed energy ## Fans at variable speed for minimal noise emission All SPINchiller³ units are equipped with electronic condensation control. It automatically reduces the fan speed when the heat load is reduced. Since the fans are the unit's main noise source, the benefits are evident especially during the night hours, when the load is reduced but sensitivity to noise is enhanced. All this translates into a sound pressure reduced down to 8 dB(A) compared to full load operation in 90% of operating time of the unit. # Two versions available for the various investment dynamics #### **Business oriented** All SPINchiller³ models feature high part-load energy efficiency, which means high ESEER seasonal efficiency. The two versions available allow choosing the best combination between the initial investment and the costs throughout the entire life-cycle of the system. ## **Excellence version: maximum efficiency** Apart from the high seasonal efficiency, the standard EXCELLENCE SC version stands out for its extremely high energy efficiency ratio (EER) during full-load cooling, which exceeds the value 3.1 and places it in Eurovent Energy Efficiency class A. This is all possible thanks to Scroll modular technology, high efficiency heat exchangers, to the speed electronic control of the phase cutting fans and to Axitop diffusers and to an electronic control device supplied as standard. #### This allows for: - energy efficiencies equal to or higher than most units on the market equipped with screw compressors, even when inverter driven - efficient use even in a large number of industrial and process applications - upgrade of the building's energy class and, therefore, increased value - maximum savings on running and maintenance costs. With Eurovent's implementation of the EN14511:2011 standard in 2012, reaching top energy efficiency levels at full load means calculating performance by also taking into account the energy consumption required to overcome pressure drops to allow for the circulation of the solution inside the exchangers. ## Premium version: compact and aggressive The optional PREMIUM version also develops excellent part-load efficiency, but features a compact design for the heat exchangers and structure. Therefore this solution is intended for applications that favour the initial investment rather than overall cost reduction throughout the lifespan of the system. # Superior flexibility and reliability ## **Efficient precision** Sequential activation of SPINchiller³ compressors allow: - adapting to the load required for use, thereby ensuring added comfort - reducing the number of compressor start-ups, i.e., the main cause of wear - increasing the unit's useful life - reducing repair times and costs, thanks to the modular components, their reduced dimensions and reduced cost compared to semihermetic compressors. THE NUMBER OF START-UPS DECREASES THEREFORE THE LIFE CYCLE INCREASES ## **Stable and reliable operation** The electronic expansion valve (EEV) adapts rapidly and precisely to the actual load required for usage, allowing stable and reliable adjustment in comparison with mechanical thermostatic valves (TEV). This results also in a further increase in efficiency and longer compressor life. The overheating control allows preventing phenomena that are hazardous to the compressors, such as overtemperature and return fluids, thereby increasing even more efficiency and durability. ## **Simplified maintenance** Besides being efficient, SPINchiller³ improves the system maintenance. In fact, the malfunction of a compressor does not compromise overall operation. Furthermore, Scroll compressors are very compact, easy to find and easy to handle in case of replacement. ## **Controlled power supply** Proper power supply ensures optimal unit operation and protects its many electrical components. The phase monitor, standard supplied in the EXCELLENCE and PREMIUM versions: - controls the presence and the exact sequence of the phases - checks any voltage anomalies (-10%) - automatically restarts the unit as soon as the proper power supply is restored. The EXCELLENCE version is fitted with a multifunction monitor, where limit values and the service schedule of Clivet's Technical Support can be modified. # The automatic control device coordinates resources ensuring maximum efficiency ## **Operating completely automatic** The microprocessor control automatically manages operation according to the maximum efficiency criterion and includes many safety and alarm management functions. It also includes advanced functions, such as daily and weekly programming and automatic maximum power consumption limitation (demand limit). #### **Perfect for LEED certification** The whole EXCELLENCE range satisfies both requirements 2 (Minimum Energy Performance) and 3 (Fundamental Refrigerant Management) of Energy and Atmosphere section. They also meet Credit 4 parameters (Enhanced Refrigerant Management) allowing 1 point acquisition. Clivet is committed in promoting the green building principles and has become a member of GBC Italia. This organization collaborates with USGBC, the U.S. nonprofit organization that promotes worldwide the LEED system of indipendent certification. ## **Modularity** In the event of particularly large buildings requiring high capacities, it is advisable to use several units. The SPINchiller³ units are designed to be connected in parallel in modular logic, thereby granting the following advantages: Increased flexibility, enhanced by the control that can adapt to the load Increased reliability, since the malfunction of one unit does not compromise the capacity supply of the other units. Increased efficiency, since energy is produced where and when required, according to the served area. The microprocessor control combined with ECOSHARE allows controlling up to 7 units in local network (1 Master unit and 6 Slave). #### MODULAR SYSTEM THAT ENHANCES SPINchiller³ TECHNOLOGY ADVANTAGES ## **Remote system management** SPINchiller³ is standard equipped with: - potential-free contact for remote on/off control - potential-free contacts for remote display of the compressor status - setting from user interface: Off / local On / serial On - potential-free contact to remote any possible alarm The various communication protocols allow the unit to exchange information with the main supervision systems by means of serial connections. # Modbus® LonWorks BACnet ## **Energy measuring** Monitoring energy consumption and instant power employed is the starting point to improve the system's energy management and efficiency. With the optional energy meter, the user displays all the information related to the unit's electrical parameters on the interface built-in the unit or via the serial connection. Moreover, the integration with the Demand Limit function supplied as standard allows to act on consumption levels by limiting them if they exceed the expected limit. # Seasonal energy efficiency is further increased with the DST operating logic SPINchiller³ is equipped with standard DST control (Dynamic Supply Temperature) control logic, which can be activated by the user. Unlike the traditional control logic that aims at maintaining the water supply temperature constant, the DST logic aims at keeping constant the water return temperature, modifying the supply temperature dynamically according to the load. This way, evaporation temperature increases during part-load cooling, thereby increasing seasonal energy efficiency. The DST control allows a considerable consumption and operation costs reduction, especially in civil applications, upon verification of the air treatment system's dehumidification capacity during cooling at part load. The DST control allows considerable consumption and operation costs reduction, especially in civil applications, upon verification of the air treatment system's dehumidification capacity during part-load cooling. The DST control is particularly interesting when combined with active thermodynamic fresh air systems. The direct expansion circuit allows them to operate the outdoor air treatment independently from SPINchiller², which can vary the system water
supply temperature, thereby optimising energy efficiency in the yearly cycle. The DST control logic is as an alternative to the control logic at variable flow-rate. ## **Example** The following diagram represents the various operating temperatures in the production of chilled water under various load conditions for a typical civil system consisting of: - primary circuit with constant water flow rate - secondary circuit with variable water flow-rate according to the load (linear variability for simplicity). The traditional control logic keeps the water supply temperature to room terminals and outdoor air treatment units constant, in order for the latter to carry out the dehumidification. The DST control logic, on the other hand, allows increasing the system water supply temperature during part-load operation, thereby increasing seasonal energy efficiency for SPINchiller³. The DST application must be verified during the design stage according to specific system constraints. #### **Traditional control logic (system water flow rate temperature = constant)** ## **DST control logic (system water return temperature = constant)** # SPINchiller³ technology industrialised the system SPINchiller³ can be supplied equipped with components that are often provided separately. This allows reducing: - design times: all accessories are made to ensure the best overall efficiency; - installation costs: the accessories already mechanically connected, electrically wired and individually tested are ready to be put to operate immediately; - overall dimensions: system components are integrated with the unit, thereby reducing the technical area and increasing the area available for other uses. #### **Built-in inertial accumulation available** In most SPINchiller³ systems it can be installed without inertial accumulation on the system. In fact, the unit quickly adapts to the load due to modular compressors, electronic thermostatic valve and low water content plate heat exchangers. However, in the event of hydraulic distribution networks with reduced dimensions, it is important to provide the system with a hydraulic flywheel. In such cases, inertial accumulation is available built-in, equipped with insulating coating and all the necessary safety devices. This allows eliminating installation times and costs and freeing space inside the building. ## The built-in pumps are versatile, ready-for-use and reliable The various solutions available are: - HYDROPACK, the modular solution with two or three parallel pumps. Automatically reduces the water flow rate when in critical conditions, thereby preventing jams due to overloading, requiring the subsequent intervention of specialised technical personnel. - it is very useful during start-ups, when restarting after operating breaks (e.g. at the weekend) or after a long period of inactivity. - Inverter driven HYDROPACK allows water flow-rate-head calibration ## Variable flow-rate advantages Pumping energy for moving the water has an heavy impact on seasonal efficiency. The variable flow control is available for all units and drives to energy savings during partial load. Pump energy consumption is proportional with cubic rotation speed. Evident the advantage when reducing flow-rate of 40% comparing to nominal conditions: energy saving is of 75% on pump energy consumption. The control logic I based on keeping stable the water temperature entering and leaving difference, guaranteeing at the same time the best efficiency and a working envelope within an acceptable range for the heat exchanger (pressure losses). The control logic applies to both flow-rate and compressor regulation thanks to steps. Proportional-Integral-Derivative guarantees a precise and stable operation. The possibility of independent pump management in case of failure is embedded in the unit keeping operative the system. ## The exceptional HydroPack operation continuity Due to its modularity, HYDROPACK maintains good water flow in the system even in the event of one of the pumps being temporarily unavailable. In fact, with a deactivated pump, the residual flow is: - about 80% of the rated flow (3 pump configuration) - about 60% of the rated flow (2 pump configuration) ## Even the primary circuit can be integrated built-in A connection to the secondary use circuit is all that's needed. In this way, the system results even more simple and reliable. The units are complete with quick connections on the hydraulic side, which further reduce start-up times by eliminating pipe threading operations. Furthermore, other system components are also available as accessories, such as hydraulic connections reported on the external walls of the unit and the required water filter. #### SPINchiller² CAN CONTAIN MOST OF THE SYSTEM COMPONENTS #### THE QUICK CONNECTIONS ARE STANDARD SUPPLIED ## **Produces hot water freely** Condensation heat recovery: - partial: it recovers about the 20% of the available heat (desuperheater) - total: it recovers the 100% of the available heat It allows the free DHW production for: - hot water coil supply for reheat - domestic hot water production (with intermediate exchanger) - other processes or operations ## **Even for low water temperature** The unit is also perfectly adapted for use in process cooling where the low temperature version (Brine) together with the addition of glycol to the thermo-vector liquid produces chilled water down to $-8\,^{\circ}$ C. ## Further considerations on the installation The vast operating field of SPINchiller³ allows it to adapt to most system applications. In some cases, special duty conditions may exceed the unit operating field. Simple devices on the system allow proper operation and meeting any requirement. Here are two examples. #### Water flow rate values outside the limits SPINchiller³ operates with constant water flow rate to the evaporator, between a minimum and maximum value indicated in the technical documents. Flow rate values below the limit may cause unwanted formation of ice, incrustations, reduced control precision, and the unit to stop following the intervention of built-in safety devices. Flow values above the limit may cause high pressure drops, high pumping costs, and reduced control precision, and erosion damages to the exchangers. In this example, the required flow-rate is lower than the maximum value allowed to the evaporator, while the operating temperatures fall within the functional field of the unit. A properly sized bypass piping resolves the problem. Example referred to WSAT-XSC3 180.4 SC EXCELLENCE version. Appropriate water flow rate for the correct unit operation. ## **Temperature values outside the limits** SPINchiller³ operates with the system supply temperatures indicated in the technical documentation. Temperature limits below the limit may cause unwanted formation of ice and the unit to stop following the intervention of built-in safety devices. Temperature values under the limit may cause malfunctions and damages to the compressors, reduced control precision, and the unit to stop following the intervention of built-in safety devices. In this example, the required temperature exceeds the maximum value allowed to the evaporator, while the water flow rate falls within the functional field of the unit. A properly sized bypass piping and mixing system resolve the problem. Should both the water flow rate and the operating temperature exceed the values intended for the chiller, all you have to do is combine the two cases described above. Example referred to WSAT-XSC3 180.4 SC EXCELLENCE version. Appropriate supply water temperature for the correct unit operation. Nominal water flow rate. ## **Evaporator thermal gradient** SPINchiller³ nominal capacities refer to an evaporator thermal gradient equal to 5 °C. A different thermal gradient may be used in full load operation, provided that both the operating flow and temperatures fall within the limits. As an indication, this corresponds to a minimum thermal gradient of approximately 3 °C and a maximum of 10 °C (the exact values must be determined based on the allowed flows and temperatures). # Standard unit technical specifications - EXCELLENCE Version ## **Compressor** High efficiency hermetic orbiting scroll compressor complete with oil charge, motor over-temperature and over-current devices and protection against excessive gas discharge temperature with oil heater, which starts automatically, keeps the oil from being diluted by the refrigerant when the compressor stops. Compressors, fitted on rubber antivibration mounts to prevent transmission of noise and vibration, are connected in TANDEM on a single refrigerating circuit with biphasic oil equalisation, it allows to reach high efficiency at partial load. Uniform compression process with reduced number of moving parts which ensure very low levels of noise and vibration. #### **Structure** Structure and base made entirely of sturdy sheet steel, thickness of 30/10 or 40/10, with the surface treatment in Zinc–Magnesium painted, for the parts in view, with polyester powder RAL 9001 that guarantees excellent mechanical characteristics and high corrosion strength over time. ## **Panelling** External pre-painted zinc-magnesium paneling, thickness 10/10, with the surface treatment in Zinc-Magnesium painted with polyester powder RAL 9001 that ensures superior resistance to corrosion for outdoor installation and eliminates the need for periodical painting. The panels can be easily removed to fully access internal components and are lined with sound-proof material on the inside to contain the unit's sound levels. ## Internal exchanger Direct expansion heat exchanger, braze-welded AISI 316 stainless steel plates, in pack without seals using copper as the brazing material, with low refrigerant charge and large exchange surface, complete with: - external thermal insulation no-condensation, thickness 9.5 mm, in extruded elastomer foam with closed cells. - differential
pressure switch, water side - antifreeze heater to protect the water side exchanger, preventing the formation of frost if the water temperature falls below a set value. Maximum operating pressure exchanger: 10 bar on the water side and 45 bar on the refrigerant side. ## **External exchanger** Finned exchanger, made from copper pipes arranged in staggered rows and mechanically expanded for better adherence to the collar of the fins. The exchangers are planned, designed and produced directly by CLIVET. The fins are made of aluminium with a special corrugated surface, set a suitable distance apart to ensure maximum heat exchange efficiency. A proper liquid supply of the expansion valve is ensured by the subcooling circuit. Each finned heat exchanger is directly cooled by the air flow of its specific fans. #### Fan Axial fans with high performance and low-noise, balanced statically and dynamically, with blades in aluminum sheet coated in PP and sickle profile terminating with "Winglets", Wall ring in sheet steel pre-galvanised, directly coupled to the three-phase electric motor with external rotor and IP54 protection and class F insulation. Fans are located in aerodynamically shaped structures, equipped with accident prevention steel guards. ## **Diffusers for external section fans - Axitop** Axitop diffusers, to be installed on the outdoor section fans, to recover dynamic energy, resulting in increased efficiency and minimal sound emission. It creates an ideal air distribution: it aerodynamically decelerates the flow and transforms a big part of its dynamic energy in static pressure. The Axitop diffuser installation is provided by the Customer. ## **Refrigeration circuit** Two independent refrigeration circuits, copper made and factory-assembled, welded with continuity metallic solution, completed with: - replaceable antiacid dehydrator filter with solid cartridge; - liquid flow and moisture indicator; - electronic expansion valve; - high pressure safety pressure switch; - high pressure safety valve; - low pressure safety valve; - cutoff valve on liquid line; - cutoff valve on compressor supply. Thermal insulated of suction line with insulation material in highly flexible closed-cell elastomer based on EPDM rubber. Refrigeration circuit pressure tested to check leaks and supplied complete of refrigerant charge ## **Configurations** D - Partial energy recovery R - Totale energy recovery B - Low water temperature SC - Acoustic configuration with compressor soundproofing EN - Super-silenced acoustic configuration ## **Electrical panel** Fully constructed and wired in accordance with EN 60204. The capacity section includes: - main door lock isolator switch: - terminals main power (400V / 3Ph / 50Hz); - isolating transformer for auxiliary circuit power supply (230V/24V); - compressor circuit breaker; - fan overload circuit breakers; - compressor control contactor. The control section includes: - interface terminal with graphic display; - display of the set values, the error codes and the parameter index; - ON/OFF and alarm reset buttons; - proportional-integral-derivative water temperature control; - daily, weekly programmer of temperature set-point and unit on/off; - unit switching on management by local or remote (serial); - antifreeze protection water side; - compressor overload protection and timer; - pre-alarm function for water antifreeze and high refrigerant gas pressure; - self-diagnosis system with immediate display of the fault code; - automatic rotation control for compressor starts; - compressor operating hour display; - remote ON/OFF control; - relay for remote cumulative fault signal; - input for demand limit (absorbed power limit according to an external signal 0÷10V or 4÷20mA); - potential-free contacts for compressor status; - digital input for double set-point enabling; - electrical panel ventilation. All device functions can be repeated with a normal portable PC connected to the unit with an Ethernet cable and equipped with an internet navigation browser. All electrical cables are colored and numbered in accordance with the wiring diagram ## **Accessories - Hydronic assembly** - HYDROPACK (n.b.: other types are available by head) - Inverter driven HYDROPACK - Storage tank - Storage tank with primary circuit with pump built-in the unit. - Steel mesh mechanical strainer (accessory separately provided). Note: To be located at the exchanger inlet. We disclaim any liability and make the guarantee void, if an appropriate mechanical filter is not provided inside the system. ## **Accessories** - Finned coil protection grill - Anti-hail protection grilles - Copper / aluminium condenser coil with acrylic lining - Copper / aluminium condenser coil with Energy Guard DCC Aluminum - High and low pressure gauges - Cutoff valve on compressor supply and return - Couple of manual shut-off valves (accessory provided separately) - Electrical panel antifreeze protection - Multi-function phase monitor (Premium Version only) - Power factor correction capacitors (cosfi > 0.9) - ECOSHARE function for the automatic management of a group of units - Disposal for inrush current reduction (SOFT STARTER) - Serial communication module for BACnet-IP supervisor - Serial communication module for Modbus supervisor - Serial communication module for LonWorks supervisor - Device for consumption reduction of the external section ECOBREEZE fans - Device for the condensing coil partialization - Remote control via microprocessor remote control (accessory separately supplied) - Mains power supply unit (accessory separately supplied) - Energy meter - Set-point compensation with signal 4÷20 mA - Set-point compensation with outdoor air temperature probe - Spring antivibration mounts (supplied separately) - Leak detector - Variable flow-rate control ## On request are available: copper /copper condenser coil with brass shoulders ## Test Unit subjected to factory-tested in specific steps and test pressure of the piping of the refrigerant circuit (with nitrogen and hydrogen), before shipping them. After the approval, the moisture contents present in all circuits are analyzed, in order to ensure the respect of the limits set by the manufacturers of the different components. # **Unit technical specifications for Premium version** Technical specifications as EXCELLENCE version, except the Phase Monitor which is at fixed calibration (multifunction optional). # Unit equipment with outdoor air low temperatures | Minimum outdoor ai
temperature | r | Operating unit | Unit in stand-by (5)
(fed unit) | Unit in storage
(unit not fed) | |-----------------------------------|---|--|--|--| | +11°C | 1 | | | | | +2°C | 2 | √ standard unit | √ standard unit | √ standard unit ⁽⁶⁾ | | -7°C | 3 | y Standard unit | y Standard unit | y Standard unit " | | -10°C | 4 | | | | | Between –10°C and –18°C | | √ electrical panel antifreeze protection √ glycol in an appropriate percentage √ device for the condensing coil partialization | √ water empty unit
or with an appropriate
glycol percentage | | | Between –18°C and –25°C | | NOT POSSIBLE | of with an appropriate glycol percentage √ electrical panel antifreeze protection | NOT POSSIBLE | | Between –25°C and –39°C | | | | | Data referred to the following conditions: internal exchanger water = 12/7°C - 1. Part load unit and air speed equal to 1 m/s. - 2. Part load unit and air speed equal to 0.5 m/s. - 3. Part load unit and outdoor air temperature at rest. - ${\bf 4.} \ \ {\bf Full \ load \ unit \ and \ outdoor \ air \ temperature \ at \ rest.}$ - $(\mbox{\ensuremath{^{5}}})$ The water pumping unit must be fed and connected to the unit according to the manual. - $\begin{tabular}{ll} \begin{tabular}{ll} \beg$ At the unit start-up the water temperature or water with glycol must be inside the operating range indicated in the "Operating range" graph. To know the water freezing temperature on varying the glycol percentage refer to the specific 'Correction factors for glycol use' table. Air conditions which are at rest are defined as the absence of air flowing towards the unit. Weak winds can induce air to flow through the exchanger and air-levels which can cause a reduction in the operating range. In the presence of predominant winds it is necessary to use suitable windbreak barriers # **Unit configuration** ## (1) Range WSAT = Air-cooled liquid chilled with scroll compressor XSC3 = SPINchiller³ range #### (2) Size 200 = Nominal compressor capacity (HP) #### (3) Compressors 4 = Compressor quantity ## (4) Energy efficiency EXC = EXCELLENCE version: high energy efficiency PRM = Compact PREMIUM version #### (5) Acoustic configuration SC = Acoustic configuration with compressor soudproofing EN = Super-silenced acoustic configuration #### (6) Fan diffusers AXIX - Diffuser for high efficiency fan (standard - separately supplied) NAXI - Diffuser not required #### (7) Condensation heat recovery (-) recovery not required (standard) D - Partial energy recovery (15% of available heat) R - Total energy recovery (100% of available heat) #### (8) Low evaporator water temperature configuration (-) Low water temperature: not required (standard) B - Low water temperature, down to -8°C (Brine) #### (9) Pumping unit user side (-) not required 2PM - Hydropack user side with no. 2 of pumps 3PM - Hydropack user side with no. 3 of pumps 2PMV- Hydropack user side with no. 2 of inverter pumps 3PMV - Hydropack user side with no. 3 of inverter pumps Functionalities Hydronic units # 2-PIPE SYSTEM Chilled water production for installation # 1.1 Standard unit #### 1.2 Standard unit with HYDROPACK ## 1.3 Standard unit
with inverter driven HYDROPACK # 2-PIPE SYSTEM + PARTIAL RECOVERY Production of chilled water Free production of hot water from partial recovery ## 2.1 Standard unit with partial recovery #### 22 Standard unit with partial recovery and HYDROPACK #### 2.3 Standard unit with partial recovery and inverter driven HYDROPACK # 2-PIPE SYSTEM # + TOTAL RECOVERY Chilled water production for installation Hot water free production from total recovery ## 3.1 Standard unit with total recovery ## 3.2 Standard unit with total recovery and HYDROPACK ## 3.3 Standard unit with total recovery and inverter driven HYDROPACK ## **Accessories separately supplied** RCMRX - Remote control via microprocessor remote control • **PSX** - Mains power supply unit • AMMX - Spring antivibration mounts ## **Acoustic configuration: compressor soundproofing (SC)** ## **General technical data - Performance** | Size | 90.4 | 100.4 | 110.4 | 120.4 | 140.4 | 160.4 | 180.4 | 200.4 | 220.4 | 240.4 | | | |-----------------------------------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Cooling | | | | | ' | | | | | | | | | Cooling capacity | 1 | [kW] | 268 | 291 | 318 | 354 | 407 | 460 | 515 | 574 | 624 | 678 | | Compressor power input | 1 | [kW] | 75 | 82 | 91 | 102 | 116 | 130 | 150 | 162 | 181 | 198 | | Total power input | 2 | [kW] | 84,8 | 91,8 | 101 | 112 | 129 | 144 | 164 | 179 | 198 | 215 | | Partial recovery heating capacity | 3 | [kW] | 68,6 | 74,6 | 81,7 | 91,2 | 105 | 118 | 133 | 147 | 161 | 175 | | Total recovery heating capacity | 3 | [kW] | 325 | 356 | 391 | 440 | 501 | 562 | 643 | 704 | 775 | 846 | | EER | 1 | - | 3,16 | 3,17 | 3,15 | 3,15 | 3,16 | 3,21 | 3,15 | 3,21 | 3,15 | 3,15 | | Water flow-rate (User Side) | 1 | [l/s] | 12,8 | 13,9 | 15,2 | 16,9 | 19,4 | 22,0 | 24,6 | 27,4 | 29,8 | 32,4 | | Internal exchanger pressure drops | 1 | [kPa] | 50 | 49 | 50 | 46 | 51 | 51 | 52 | 51 | 50 | 55 | | Cooling capacity (EN14511:2013) | 4 | [kW] | 267 | 290 | 316 | 353 | 405 | 459 | 513 | 572 | 621 | 675 | | Total power input (EN14511:2013) | 4 | [kW] | 85,8 | 92,9 | 102 | 114 | 130 | 145 | 165 | 181 | 200 | 218 | | EER (EN 14511:2013) | 4 | - | 3,11 | 3,12 | 3,10 | 3,10 | 3,11 | 3,16 | 3,10 | 3,16 | 3,10 | 3,10 | | ESEER | 4 | - | 4,31 | 4,37 | 4,35 | 4,35 | 4,40 | 4,54 | 4,51 | 4,40 | 4,38 | 4,44 | | Cooling capacity (AHRI 550/590) | 5 | [kW] | 267 | 290 | 316 | 352 | 405 | 458 | 513 | 571 | 621 | 675 | | Total power input (AHRI 550/590) | 5 | [kW] | 84,5 | 91,5 | 100,5 | 112,1 | 128,4 | 143,0 | 163,0 | 178,2 | 197,3 | 214,2 | | COP _R | 5 | - | 3,16 | 3,16 | 3,15 | 3,14 | 3,16 | 3,21 | 3,15 | 3,21 | 3,15 | 3,15 | | IPLV | 5 | - | 4,82 | 4,90 | 4,86 | 4,87 | 4,95 | 5,06 | 5,05 | 4,92 | 4,89 | 4,96 | - Data referred to the following conditions: internal exchanger water = 12/7 °C. Entering external exchanger air temperature 35°C. Evaporator fouling factor = 0.44 x 10^(-4) m2 K/W - The Total Power Input value does not take into account the part related to the pumps and required to overcome the pressure drops for the circulation of the solution inside the exchangers - 3. Option. Recovery exchanger water=40/45°C - Data compliant to Standard EN 14511:2013 referred to the following conditions: Internal exchanger water temperature = 12/7°C - Entering external exchanger air temperature = 35°C - Data compliant to Standard AHRI 550/590 referred to the following conditions: internal exchanger water temperature = 6,7 °C. Water flow-rate 0,043 l/s per kW. Entering external exchanger air temperature 35°C. Evaporator fouling factor = 0.18 x 10^(-4) m² K/W ## **PREMIUM VERSION** ## **General technical data - Performance** | Size | 120.4 | 140.4 | 160.4 | 180.4 | 200.4 | 220.4 | 240.4 | | | |-----------------------------------|-------|-------|-------|-------|-------|-------|-------|----------|------| | Cooling | | | | | | | | <u> </u> | | | Cooling capacity | 1 | [kW] | 334 | 381 | 423 | 492 | 531 | 596 | 648 | | Compressor power input | 1 | [kW] | 109 | 125 | 140 | 159 | 174 | 193 | 210 | | Total power input | 2 | [kW] | 118 | 135 | 149 | 171 | 186 | 208 | 226 | | Partial recovery heating capacity | 3 | [kW] | 89,8 | 102 | 114 | 131 | 144 | 160 | 174 | | Total recovery heating capacity | 3 | [kW] | 427 | 486 | 556 | 627 | 691 | 767 | 833 | | EER | 1 | - | 2,81 | 2,84 | 2,83 | 2,86 | 2,84 | 2,85 | 2,86 | | Water flow-rate (User Side) | 1 | [l/s] | 16,0 | 18,2 | 20,2 | 23,5 | 25,4 | 28,5 | 31,0 | | Internal exchanger pressure drops | 1 | [kPa] | 55 | 53 | 55 | 58 | 55 | 55 | 54 | | Cooling capacity (EN14511:2013) | 4 | [kW] | 333 | 379 | 421 | 490 | 529 | 594 | 645 | | Total power input (EN14511:2013) | 4 | [kW] | 120 | 136 | 151 | 174 | 189 | 211 | 229 | | EER (EN 14511:2013) | 4 | - | 2,77 | 2,80 | 2,78 | 2,82 | 2,80 | 2,81 | 2,82 | | ESEER | 4 | - | 4,11 | 4,15 | 4,12 | 4,12 | 4,06 | 4,12 | 4,10 | | Cooling capacity (AHRI 550/590) | 5 | [kW] | 332 | 379 | 420 | 489 | 528 | 592 | 644 | | Total power input (AHRI 550/590) | 5 | [kW] | 118 | 134 | 149 | 171 | 186 | 208 | 225 | | COP _R | 5 | - | 2,80 | 2,83 | 2,82 | 2,85 | 2,83 | 2,84 | 2,86 | | IPLV | 5 | - | 4,59 | 4,65 | 4,64 | 4,63 | 4,55 | 4,60 | 4,60 | - Data referred to the following conditions: internal exchanger water = 12/7 °C. Entering external exchanger air temperature 35°C. Evaporator fouling factor = 0.44 x 10^(-4) m2 K/W - The Total Power Input value does not take into account the part related to the pumps and required to overcome the pressure drops for the circulation of the solution inside the exchangers - 3. Option. Recovery exchanger water= $40/45^{\circ}C$ - Data compliant to Standard EN 14511:2013 referred to the following conditions: Internal exchanger water temperature = 12/7°C - Entering external exchanger air temperature = 35°C - Data compliant to Standard AHRI 550/590 referred to the following conditions: internal exchanger water temperature = 6,7 °C. Water flow-rate 0,043 l/s per kW. Entering external exchanger air temperature 35°C. Evaporator fouling factor = 0.18 x 10^(-4) m² K/W **Acoustic configuration: super-silenced (EN)** ## **General technical data - Performance** | Size | | 90.4 | 100.4 | 110.4 | 120.4 | 140.4 | 160.4 | 180.4 | 200.4 | 220.4 | 240.4 | | |-----------------------------------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Cooling | | | | | | 1 | | | | | | | | Cooling capacity | 1 | [kW] | 259 | 280 | 307 | 341 | 393 | 438 | 491 | 549 | 599 | 642 | | Compressor power input | 1 | [kW] | 78 | 85 | 95 | 108 | 120 | 136 | 160 | 170 | 191 | 210 | | Total power input | 2 | [kW] | 85,1 | 92,1 | 102,1 | 115 | 130 | 146 | 169 | 182 | 203 | 222 | | Partial recovery heating capacity | 3 | [kW] | 67,4 | 73,0 | 80,4 | 89,8 | 103,0 | 115,0 | 130,0 | 144,0 | 158,0 | 170,0 | | Total recovery heating capacity | 3 | [kW] | 319 | 349 | 385 | 433 | 491 | 552 | 626 | 697 | 763 | 837 | | EER | 1 | - | 3,04 | 3,04 | 3,01 | 2,96 | 3,03 | 3,01 | 2,90 | 3,02 | 2,96 | 2,90 | | Water flow-rate (User Side) | 1 | [l/s] | 12,4 | 13,4 | 14,7 | 16,3 | 18,8 | 20,9 | 23,5 | 26,2 | 28,6 | 30,7 | | Internal exchanger pressure drops | 1 | [kPa] | 47 | 46 | 47 | 43 | 48 | 46 | 47 | 47 | 46 | 49 | | Cooling capacity (EN14511:2013) | 4 | [kW] | 258 | 279 | 306 | 340 | 392 | 436 | 489 | 547 | 597 | 640 | | Total power input (EN14511:2013) | 4 | [kW] | 86,0 | 93,1 | 103 | 116 | 131 | 147 | 171 | 184 | 205 | 224 | | EER (EN 14511:2013) | 4 | - | 3,00 | 3,00 | 2,96 | 2,92 | 2,99 | 2,97 | 2,86 | 2,98 | 2,92 | 2,86 | | ESEER | 4 | - | 4,27 | 4,33 | 4,38 | 4,26 | 4,33 | 4,28 | 4,42 | 4,32 | 4,35 | 4,35 | | Cooling capacity (AHRI 550/590) | 5 | [kW] | 257 | 278 | 305 | 339 | 391 | 435 | 488 | 546 | 595 | 638 | | Total power input (AHRI 550/590) | 5 | [kW] | 84,9 | 91,8 | 102 | 115 | 129 | 145 | 169 | 181 | 202 | 221 | | COP _R | 5 | - | 3,03 | 3,03 | 3,00 | 2,95 | 3,02 | 3,00 | 2,89 | 3,01 | 2,95 | 2,89 | | IPLV | 5 | - | 4,8 | 4,87 | 4,92 | 4,78 | 4,83 | 4,79 | 4,93 | 4,83 | 4,87 | 4,85 | - Data referred to the following conditions: internal exchanger water = 12/7 °C. Entering external exchanger air temperature 35°C. Evaporator fouling factor = 0.44 x 10^(-4) m2 K/W - The Total Power Input value does not take into account the part related to the pumps and required to overcome the pressure drops for the circulation of the solution inside the exchangers - 3. Option. Recovery exchanger water=40/45°C - Data compliant to Standard EN 14511:2013 referred to the following conditions: Internal exchanger water temperature = 12/7°C - Entering external exchanger air temperature = 35°C - Data compliant to Standard AHRI 550/590 referred to the following conditions: internal exchanger water temperature = 6,7 °C. Water flow-rate 0,043 l/s per kW. Entering external exchanger air temperature 35°C. Evaporator fouling factor = 0.18 x 10^(-4) m² K/W ## **PREMIUM VERSION** **Acoustic configuration: super-silenced (EN)** ## **General technical data - Performance** | Size | | 120.4 | 140.4 | 160.4 | 180.4 | 200.4 | 220.4 | 240.4 | | |-----------------------------------|---|-------|-------|-------|-------|-------|-------|-------|------| | Cooling | | | | | | | | | | | Cooling capacity | 1 | [kW] | 322 | 365 | 405 | 471 | 504 | 573 | 614 | | Compressor power input | 1 | [kW] | 114 | 130 | 146 | 166 | 185 | 202 | 221 | | Total power input | 2 | [kW] | 121 | 137 | 153 | 175 | 194 | 213 | 233 | | Partial recovery heating capacity | 3 | [kW] | 89,8 | 102 | 114 | 131 | 144 | 160 | 174 | | Total recovery heating capacity | 3 | [kW] | 419 | 480 | 548 | 622 | 685 | 758 | 824 | | EER | 1 | - | 2,66 | 2,66 | 2,64 | 2,69 | 2,59 | 2,68 | 2,64 | | Water flow-rate (User Side) | 1 | [l/s] | 15,4 | 17,4 | 19,4 | 22,5 | 24,1 | 27,4 | 29,3 | | Internal exchanger pressure drops | 1 | [kPa] | 50,9 | 49,1 | 50,6 | 52,9 | 49,5 | 51,1 | 48,5 | | Cooling capacity (EN14511:2013) | 4 | [kW] | 321 | 364 | 403 | 469 | 502 | 571 | 612 | | Total power input
(EN14511:2013) | 4 | [kW] | 122 | 138 | 155 | 177 | 196 | 216 | 235 | | EER (EN 14511:2013) | 4 | - | 2,62 | 2,63 | 2,61 | 2,65 | 2,56 | 2,65 | 2,61 | | ESEER | 4 | - | 4,07 | 4,04 | 4,03 | 4,04 | 4,01 | 4,07 | 4,05 | | Cooling capacity (AHRI 550/590) | 5 | [kW] | 320 | 363 | 402 | 468 | 501 | 569 | 610 | | Total power input (AHRI 550/590) | 5 | [kW] | 121 | 137 | 153 | 175 | 194 | 213 | 232 | | COP _R | 5 | - | 2,65 | 2,65 | 2,64 | 2,68 | 2,59 | 2,68 | 2,63 | | IPLV | 5 | - | 4,54 | 4,53 | 4,50 | 4,52 | 4,50 | 4,57 | 4,52 | - Data referred to the following conditions: internal exchanger water = 12/7 °C. Entering external exchanger air temperature 35°C. Evaporator fouling factor = 0.44 x 10^(-4) m2 K/W - The Total Power Input value does not take into account the part related to the pumps and required to overcome the pressure drops for the circulation of the solution inside the exchangers - 3. Option. Recovery exchanger water=40/45°C - 4. Data compliant to Standard EN 14511:2013 referred to the following conditions: Internal exchanger water temperature = $12/7^{\circ}$ C Entering external exchanger air temperature = 35° C - Data compliant to Standard AHRI 550/590 referred to the following conditions: internal exchanger water temperature = 6,7 °C. Water flow-rate 0,043 l/s per kW. Entering external exchanger air temperature 35°C. Evaporator fouling factor = 0.18 x 10^(-4) m² K/W ## **Acoustic configuration: compressor soundproofing (SC)** ## **General technical data - Construction** | Size | | | 90.4 | 100.4 | 110.4 | 120.4 | 140.4 | 160.4 | 180.4 | 200.4 | 220.4 | 240.4 | |---------------------------------|---|-------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Compressor | | | 1 | | | | | | | 1 | | | | Type of compressors | | - | Scroll | No. of compressors | | Nr | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | Rated power (C1) | | [HP] | 45 | 50 | 55 | 60 | 70 | 80 | 90 | 100 | 100 | 120 | | Rated power (C2) | | [HP] | 45 | 50 | 55 | 60 | 70 | 80 | 90 | 100 | 120 | 120 | | Std Capacity control steps | | - | 6 | 6 | 6 | 4 | 6 | 4 | 6 | 6 | 6 | 4 | | Oil charge (C1) | | [1] | 10 | 11 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | | Oil charge (C2) | | [1] | 10 | 11 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | | Refrigerant charge (C1) | 1 | [kg] | 26 | 33 | 33 | 33 | 44 | 44 | 50 | 54 | 55 | 65 | | Refrigerant charge (C2) | 1 | [kg] | 25 | 32 | 32 | 32 | 42 | 43 | 49 | 53 | 61 | 63 | | Refrigeration circuits | | - | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Internal exchanger | | | | | | | | | | | | | | Type of internal exchanger | 2 | - | PHE | Water content | | [1] | 20 | 22 | 24 | 29 | 32 | 37 | 42 | 49 | 58 | 62 | | System water content | 3 | I | 937 | 1196 | 1502 | 1819 | 1840 | 2367 | 1801 | 2359 | 2436 | 3483 | | External Section Fans | | | | | | | | | | | | | | Type of fans | 4 | - | AX | Number of fans | | Nr | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 10 | 10 | 10 | | Type of motor | 5 | - | AC/P | Standard airflow | | [l/s] | 36628 | 36204 | 36187 | 34999 | 48272 | 46666 | 45657 | 58332 | 57703 | 57073 | | Connections | | | | | | | | | | | | | | Water fittings | | - | 4" | 4" | 4" | 4" | 4" | 4" | 4" | 5" | 5" | 5" | | Power supply | | | | | | | | | | | | | | Standard power supply | | ٧ | 400/3~/50 | 400/3~/50 | 400/3~/50 | 400/3~/50 | 400/3~/50 | 400/3~/50 | 400/3~/50 | 400/3~/50 | 400/3~/50 | 400/3~/50 | | Electrical data | | | | | | | | | | | | | | FLA Total | | A | 205,5 | 216,5 | 233,3 | 262,1 | 299,3 | 328,3 | 379,7 | 416,9 | 457,1 | 497,3 | | FLITotal | | kW | 117,7 | 128,6 | 138,2 | 155,8 | 180,7 | 201,9 | 227,5 | 252,4 | 275,8 | 299,2 | | M.I.C Value | 6 | A | 455,6 | 466,9 | 483,7 | 512,5 | 619,2 | 648,2 | 649,4 | 686,6 | 726,8 | 767,0 | | M.I.C with soft start accessory | 6 | A | 317,8 | 329,1 | 345,9 | 374,7 | 447,2 | 476,2 | 649,4 | 686,6 | 726,8 | 767,0 | Indicative values for standard units with possible +/-10% variation. The actual data are indicated on the unit label ## **Sound levels** | Size | | | | | er level | | | | Sound
power
level | Sound
pressure
level | |-------|-----|-----|-----|-----|----------|------|------|------|-------------------------|----------------------------| | | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 | dB(A) | dB(A) | | 90.4 | 93 | 90 | 90 | 88 | 88 | 85 | 71 | 62 | 92 | 72 | | 100.4 | 93 | 90 | 90 | 88 | 88 | 85 | 71 | 62 | 92 | 72 | | 110.4 | 93 | 90 | 90 | 88 | 88 | 85 | 71 | 62 | 92 | 72 | | 120.4 | 93 | 90 | 90 | 88 | 88 | 85 | 71 | 62 | 92 | 72 | | 140.4 | 94 | 91 | 91 | 89 | 89 | 86 | 72 | 63 | 92 | 72 | | 160.4 | 95 | 92 | 92 | 90 | 90 | 87 | 73 | 64 | 93 | 73 | | 180.4 | 101 | 97 | 96 | 93 | 89 | 84 | 78 | 72 | 95 | 74 | | 200.4 | 101 | 97 | 96 | 93 | 89 | 84 | 78 | 72 | 95 | 74 | | 220.4 | 102 | 98 | 97 | 94 | 90 | 85 | 79 | 73 | 95 | 74 | | 240.4 | 102 | 98 | 73 | 95 | 75 | | | | | | $The sound \ levels \ refer to \ standard \ unit \ with \ Axitop \ (no \ accessories) \ at \ full \ load, in \ test \ nominal \ conditions. \ The \ sound$ pressure level refers to 1 m. from the standard unit outer surface operating in open field. Measures are according to UNI EN ISO 9614-2 regulations, with respect to the EUROVENT 8/1 certification, which provides for a tolerance of 3 dB(A) on the sound power level, which is the only acoustic data to be considered binding. If unit is set without Axitop, the sound power level presents an increase up to 3 dB(A). Data referred to the following conditions. - internal exchanger water = 12/7 °C - Ambient temperature $= 35 \, ^{\circ}\text{C}$ PHE = plate exchanger Recommended system water content that does not consider the internal exchanger water content (evaporator). With outdoor air low temperature applications or low medium requested loads, the minimum installation water volume is obtained doubling the indicated value. 4. AX = axial fan ^{5.} AC/P = asynchronous three-phase external rotor motor with phase cutting speed automatic control Unbalance between phase max 2 % Voltage variation: max +/- 10% Electrical data refer to standard units; according to the installed accessories, the data can suffer some variations. 6. M.I.C.=Maximum unit starting current. The M.I.C. value is obtained adding the max. compressor starting current of the highest size to the power input at max. admissible conditions (F.L.A.) of the remaining electric components. ## **PREMIUM VERSION** ## **Acoustic configuration: compressor soundproofing (SC)** ## **General technical data - Construction** | Size | | | 120.4 | 140.4 | 160.4 | 180.4 | 200.4 | 220.4 | 240.4 | |---------------------------------|---|-------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Compressor | | | | | | | | | | | Type of compressors | | - | Scroll | No. of compressors | | Nr | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | Rated power (C1) | | [HP] | 60 | 70 | 80 | 90 | 100 | 100 | 120 | | Rated power (C2) | | [HP] | 60 | 70 | 80 | 90 | 100 | 120 | 120 | | Std Capacity control steps | | - | 4 | 6 | 4 | 6 | 6 | 5 | 4 | | Oil charge (C1) | | [1] | 13 | 13 | 13 | 13 | 13 | 13 | 13 | | Oil charge (C2) | | [1] | 13 | 13 | 13 | 13 | 13 | 13 | 13 | | Refrigerant charge (C1) | 1 | [kg] | 27 | 34 | 35 | 36 | 45 | 44 | 58 | | Refrigerant charge (C2) | 1 | [kg] | 26 | 33 | 33 | 35 | 44 | 53 | 56 | | Refrigeration circuits | | - | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Internal exchanger | | | | | | | | | | | Type of internal exchanger | 2 | - | PHE | Water content | | [1] | 24 | 29 | 32 | 37 | 42 | 49 | 58 | | System water content | 3 | 1 | 1717 | 1723 | 2173 | 1720 | 2183 | 2327 | 3330 | | External Section Fans | | | | | | | | | | | Type of fans | 4 | - | AX | Number of fans | | Nr | 6 | 6 | 6 | 8 | 8 | 10 | 10 | | Type of motor | 5 | - | AC/P | Standard airflow | | [l/s] | 37459 | 37103 | 36017 | 49946 | 49471 | 62135 | 60028 | | Connections | | | | | | | | | | | Water fittings | | - | 4" | 4" | 4" | 4" | 5" | 5" | 5″ | | Power supply | | | | | | | | | | | Standard power supply | | ٧ | 400/3~/50 | 400/3~/50 | 400/3~/50 | 400/3~/50 | 400/3~/50 | 400/3~/50 | 400/3~/50 | | Electrical data | | | | | | | | | | | FLA Total | | A | 262,1 | 291,1 | 320,1 | 379,7 | 408,7 | 457,1 | 497,3 | | FLI Total | | kW | 155,8 | 177,0 | 198,2 | 227,5 | 248,7 | 275,8 | 299,2 | | M.I.C Value | 6 | A | 512,5 | 611,0 | 640,0 | 649,4 | 678,4 | 726,8 | 767,0 | | M.I.C with soft start accessory | 6 | A | 374,7 | 439,0 | 468,0 | 649,4 | 678,4 | 726,8 | 767,0 | Indicative values for standard units with possible +/-10% variation. The actual data are indicated on the unit label PHE = plate exchanger Recommended system water content that does not consider the internal exchanger water content (evaporator). ## **Sound levels** | Size | | | | | er level
oand (Hz | | | | Sound
power
level | Sound
pressure
level | |-------|-----|-----|-----|------|----------------------|-------|----|----|-------------------------|----------------------------| | | 63 | 125 | 250 | 8000 | dB(A) | dB(A) | | | | | | 120.4 | 93 | 90 | 90 | 88 | 88 | 85 | 71 | 62 | 92 | 72 | | 140.4 | 94 | 91 | 91 | 89 | 89 | 86 | 72 | 63 | 92 | 72 | | 160.4 | 95 | 92 | 92 | 90 | 90 | 87 | 73 | 64 | 93 | 73 | | 180.4 | 101 | 97 | 96 | 93 | 89 | 84 | 78 | 72 | 95 | 74 | | 200.4 | 101 | 97 | 96 | 93 | 89 | 84 | 78 | 72 | 95 | 74 | | 220.4 | 102 | 98 | 97 | 94 | 90 | 85 | 79 | 73 | 95 | 74 | | 240.4 | 102 | 98 | 97 | 73 | 95 | 75 | | | | | The sound levels refer to standard unit with Axitop (no accessories) at full load, in test nominal conditions. The sound pressure level refers to 1 m. from the standard unit outer surface operating in open field. Measures are according to UNI EN ISO 9614-2 regulations, with respect to the EUROVENT 8/1 certification, which provides for a tolerance of 3 dB(A) on the sound power level, which is the only acoustic data to be considered binding. If unit is set without Axitop, the sound power level presents an increase up to
3 dB(A). Data referred to the following conditions. - internal exchanger water = 12/7 °C - Ambient temperature = 35 °C With outdoor air low temperature applications or low medium requested loads, the minimum installation water volume is obtained doubling the indicated value. ^{4.} AX = axial fan ^{5.} AC/P = asynchronous three-phase external rotor motor with phase cutting speed automatic control Unbalance between phase max 2 % Voltage variation: max +/- 10% Electrical data refer to standard units; according to the installed accessories, the data can suffer some variations. 6. M.I.C.=Maximum unit starting current. The M.I.C. value is obtained adding the max. compressor starting current of the highest size to the power input at max. admissible conditions (F.L.A.) of the remaining electric components. ## **Acoustic configuration: super-silenced (EN)** ## **General technical data - Construction** | Size | 90.4 | 100.4 | 110.4 | 120.4 | 140.4 | 160.4 | 180.4 | 200.4 | 220.4 | 240.4 | | | |---------------------------------|------|-------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Compressor | | | <u>'</u> | | | | | | | | | | | Type of compressors | | - | Scroll | No. of compressors | | Nr | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | Rated power (C1) | | [HP] | 45 | 50 | 55 | 60 | 70 | 80 | 90 | 100 | 100 | 120 | | Rated power (C2) | | [HP] | 45 | 50 | 55 | 60 | 70 | 80 | 90 | 100 | 120 | 120 | | Std Capacity control steps | | - | 6 | 6 | 6 | 4 | 6 | 4 | 6 | 6 | 6 | 4 | | Oil charge (C1) | | [1] | 10 | 11 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | | Oil charge (C2) | | [1] | 10 | 11 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | | Refrigerant charge (C1) | 1 | [kg] | 26 | 33 | 33 | 33 | 44 | 44 | 50 | 54 | 55 | 65 | | Refrigerant charge (C2) | 1 | [kg] | 25 | 32 | 32 | 32 | 42 | 43 | 49 | 53 | 61 | 63 | | Refrigeration circuits | | - | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Internal exchanger | | | | | | | | | | | | | | Type of internal exchanger | 2 | - | PHE | Water content | | [1] | 20 | 22 | 24 | 29 | 32 | 37 | 42 | 49 | 58 | 62 | | System water content | 3 | I | 937 | 1196 | 1502 | 1819 | 1840 | 2367 | 1801 | 2359 | 2436 | 3483 | | External Section Fans | | | | | | | | | | | | | | Type of fans | 4 | - | AX | Number of fans | | Nr | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 10 | 10 | 10 | | Type of motor | 5 | - | AC/P | Standard airflow | | [l/s] | 30282 | 29943 | 29943 | 28704 | 39924 | 38272 | 37345 | 47841 | 47841 | 46681 | | Connections | | | | | | | | | | | | | | Water fittings | | - | 4" | 4" | 4" | 4" | 4" | 4" | 4" | 5" | 5" | 5″ | | Power supply | | | | | | | | | | | | | | Standard power supply | | ٧ | 400/3~/50 | 400/3~/50 | 400/3~/50 | 400/3~/50 | 400/3~/50 | 400/3~/50 | 400/3~/50 | 400/3~/50 | 400/3~/50 | 400/3~/50 | | Electrical data | | | | | | | | | | | | | | FLA Total | | A | 205,2 | 216,5 | 233,3 | 262,1 | 299,3 | 328,3 | 379,7 | 416,9 | 457,1 | 497,3 | | FLITotal | | kW | 117,7 | 128,6 | 138,2 | 155,8 | 180,7 | 201,9 | 227,5 | 252,4 | 275,8 | 299,2 | | M.I.C Value | 6 | A | 455,6 | 466,9 | 483,7 | 512,5 | 619,2 | 648,2 | 649,4 | 686,6 | 726,8 | 767,0 | | M.I.C with soft start accessory | 6 | A | 317,8 | 329,1 | 345,9 | 374,7 | 447,2 | 476,2 | 649,4 | 686,6 | 726,8 | 767,0 | Indicative values for standard units with possible +/-10% variation. The actual data are indicated on the unit label Electrical data refer to standard units; according to the installed accessories, the data can suffer some variations. 6. M.I.C.=Maximum unit starting current. 6. M.I.C.=Maximum unit starting current. The M.I.C. value is obtained adding the max. compressor starting current of the highest size to the power input at max. admissible conditions (F.L.A.) of the remaining electric components. ## **Sound levels** | | | | Sou | ınd pow | er level | (dB) | | Sound | Sound | | |-------|------------------|-----|-----|---------|----------|----------------|-------------------|-------|-------|-------| | Size | Octave band (Hz) | | | | | power
level | pressure
level | | | | | | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 | dB(A) | dB(A) | | 90.4 | 87 | 84 | 84 | 82 | 82 | 79 | 65 | 56 | 86 | 66 | | 100.4 | 87 | 84 | 84 | 82 | 82 | 79 | 65 | 56 | 86 | 66 | | 110.4 | 87 | 84 | 84 | 82 | 82 | 79 | 65 | 56 | 86 | 66 | | 120.4 | 88 | 85 | 85 | 83 | 83 | 80 | 66 | 57 | 86 | 66 | | 140.4 | 88 | 85 | 85 | 83 | 83 | 80 | 66 | 57 | 86 | 66 | | 160.4 | 89 | 86 | 86 | 84 | 84 | 81 | 67 | 58 | 87 | 67 | | 180.4 | 96 | 92 | 91 | 88 | 84 | 79 | 73 | 67 | 90 | 69 | | 200.4 | 96 | 92 | 91 | 88 | 84 | 79 | 73 | 67 | 90 | 69 | | 220.4 | 97 | 93 | 92 | 89 | 85 | 80 | 74 | 68 | 90 | 69 | | 240.4 | 97 | 93 | 92 | 89 | 85 | 80 | 74 | 68 | 90 | 70 | The sound levels refer to standard unit with Axitop (no accessories) at full load, in test nominal conditions. The sound pressure level refers to 1 m. from the standard unit outer surface operating in open field. Measures are according to UNI EN ISO 9614-2 regulations, with respect to the EUROVENT 8/1 certification, which provides for a tolerance of 3 dB(A) on the sound power level, which is the only acoustic data to be considered binding. If unit is set without Axitop, the sound power level presents an increase up to 3 dB(A). Data referred to the following conditions. - internal exchanger water = 12/7 °C - Ambient temperature = 35 °C The indicated sound levels are only valid within the operating field of the standard unit at full load as indicated in the 'Operating range - cooling' graph in the "Super-silenced EN" configuration. With outdoor air temperatures the unit operates at full load automatically increasing the airflow and taking the same sound levels of the "Soundproofed . Compressors SC" configuration. PHE = plate exchanger Recommended system water content that does not consider the internal exchanger water content (evaporator). With outdoor air low temperature applications or low medium requested loads, the minimum installation water volume is obtained doubling the indicated value. 4. AX = axial fan ^{5.} AC/P = asynchronous three-phase external rotor motor with phase cutting speed automatic control Unbalance between phase max 2 % Voltage variation: max +/- 10% ## PREMIUM VERSION ## **Acoustic configuration: super-silenced (EN)** ## **General technical data - Construction** | Size | | | 120.4 | 140.4 | 160.4 | 180.4 | 200.4 | 220.4 | 240.4 | |---------------------------------|---|-------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Compressor | | | | | 1 | | | | | | Type of compressors | | - | Scroll | No. of compressors | | Nr | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | Rated power (C1) | | [HP] | 60 | 70 | 80 | 90 | 100 | 100 | 120 | | Rated power (C2) | | [HP] | 60 | 70 | 80 | 90 | 100 | 100 | 120 | | Std Capacity control steps | | - | 4 | 6 | 4 | 6 | 6 | 5 | 4 | | Oil charge (C1) | | [1] | 13 | 13 | 13 | 13 | 13 | 13 | 13 | | Oil charge (C2) | | [1] | 13 | 13 | 13 | 13 | 13 | 13 | 13 | | Refrigerant charge (C1) | 1 | [kg] | 27 | 34 | 35 | 36 | 45 | 44 | 58 | | Refrigerant charge (C2) | 1 | [kg] | 26 | 33 | 33 | 35 | 44 | 53 | 56 | | Refrigeration circuits | | - | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Internal exchanger | | | | | | | | | | | Type of internal exchanger | 2 | - | PHE | Water content | | [1] | 24 | 29 | 32 | 37 | 42 | 49 | 58 | | System water content | 3 | ı | 1717 | 1723 | 2173 | 1720 | 2183 | 2327 | 3330 | | External Section Fans | | | | | | | | | | | Type of fans | 4 | - | AX | Number of fans | | Nr | 6 | 6 | 6 | 8 | 8 | 10 | 10 | | Type of motor | 5 | - | AC/P | Standard airflow | | [l/s] | 30282 | 29943 | 28704 | 40376 | 39924 | 50471 | 47841 | | Connections | | | | | | | | | | | Water fittings | | - | 4" | 4" | 4" | 4" | 4" | 4" | 4" | | Power supply | | | | | | | | | | | Standard power supply | | ٧ | 400/3~/50 | 400/3~/50 | 400/3~/50 | 400/3~/50 | 400/3~/50 | 400/3~/50 | 400/3~/50 | | Electrical data | | | | | | | | | | | FLA Total | | A | 262,1 | 291,1 | 320,1 | 379,7 | 408,7 | 457,1 | 497,3 | | FLITotal | | kW | 155,8 | 177,0 | 198,2 | 227,5 | 248,7 | 275,8 | 299,2 | | M.I.C Value | 6 | Α | 512,5 | 611,0 | 640,0 | 649,4 | 678,4 | 726,8 | 767,0 | | M.I.C with soft start accessory | 6 | Α | 374,7 | 439,0 | 468,0 | 649,4 | 678,4 | 726,8 | 767,0 | ^{1.} Indicative values for standard units with possible +/-10% variation. The actual data are indicated on the unit ## **Sound levels** | Size | | | | | er level
oand (Hz | | | | Sound
power
level | Sound
pressure
level | |-------|----|-----|-----|-----|----------------------|------|------|------|-------------------------|----------------------------| | | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 | dB(A) | dB(A) | | 120.4 | 88 | 85 | 85 | 83 | 83 | 80 | 66 | 57 | 86 | 66 | | 140.4 | 88 | 85 | 85 | 83 | 83 | 80 | 66 | 57 | 86 | 66 | | 160.4 | 89 | 86 | 86 | 84 | 84 | 81 | 67 | 58 | 87 | 67 | | 180.4 | 96 | 92 | 91 | 88 | 84 | 79 | 73 | 67 | 90 | 69 | | 200.4 | 96 | 92 | 91 | 88 | 84 | 79 | 73 | 67 | 90 | 69 | | 220.4 | 97 | 93 | 92 | 89 | 85 | 80 | 74 | 68 | 90 | 69 | | 240.4 | 97 | 93 | 92 | 89 | 85 | 80 | 74 | 68 | 90 | 70 | The sound levels refer to standard unit with Axitop (no accessories) at full load, in test nominal conditions. The sound pressure level refers to 1 m. from the standard unit outer surface operating in open field. Measures are according to UNI EN ISO 9614-2 regulations, with respect to the EUROVENT 8/1 certification, which provides for a tolerance of 3 dB(A) on the sound power level, which is the only acoustic data to be considered If unit is set without Axitop, the sound power level presents an increase up to 3 dB(A). Data referred to the following conditions. - internal exchanger water = 12/7 °C - Ambient temperature = 35 °C The indicated sound levels are only valid within the operating field of the standard unit at full load as indicated in the $'Operating\ range\ -\ cooling\ '\ graph\
in\ the\ ''Super-silenced\ EN''\ configuration.\ With\ outdoor\ air\ temperatures\ the\ unit$ operates at full load automatically increasing the airflow and taking the same sound levels of the "Soundproofed Compressors SC" configuration. label PHE = plate exchanger Recommended system water content that does not consider the internal exchanger water content (evaporator). With outdoor air low temperature applications or low medium requested loads, the minimum installation water volume is obtained doubling the indicated value. ^{4.} AX = axial fan ^{5.} AC/P = asynchronous three-phase external rotor motor with phase cutting speed automatic control Unbalance between phase max 2 % Voltage variation: max +/- 10% Electrical data refer to standard units, according to the installed accessories, the data can suffer some variations. 6. M.I.C.=Maximum unit starting current. The M.I.C. value is obtained adding the max. compressor starting current of the highest size to the power input at max. admissible conditions (F.L.A.) of the remaining electric components. # **Operating range - Cooling** ## **EXCELLENCE VERSION** # Acoustic configuration: compressor soundproofing (SC) Ta (°C) = external exchanger inlet air temperature (D.B.) To $(^{\circ}C)$ = internal exchanger outlet water temperature - Standard unit operating range at full load - Unit operating range with automatic staging of the compressor capacity - Standard unit operating range with air flow automatic modulation 3. - 4. Unit operating range in 'B - Low water temperature' configuration (40% ethylene glycol) - Unit operating range with 'REGBT device for the condensing coil partialization' - Extended of operating range (extremely low water temperature option available on request) ## **Acoustic configuration: super-silenced (EN)** Ta (°C)= entering external exchanger air temperature (D.B.) To (°C)= leaving internal exchanger water temperature - Standard unit operating range at full load - $\label{thm:condition} \textbf{Extended operating range with air flow-rate automatic increasing. Inside this field the sound levels are $\mathbf{E}(\mathbf{r})$ and $\mathbf{E}(\mathbf{r})$ are the sound level of the sound levels are $\mathbf{E}(\mathbf{r})$ and $\mathbf{E}(\mathbf{r})$ are the sound level of th$ the same of the 'compressor soundproofing (SC)' acoustic configuration - Unit operating range with compressor capacity automatic partialization. - 4. Standard unit operating range with air flow-rate automatic modulation - Operation field extension for unit in 'B Low water temperature (Brine)' configuration (40% ethylene - 6. Unit operating range with 'REGBT - device for the condensing coil partialization' - Extended of operating range (extremely low water temperature option available on request) ## **PREMIUM VERSION** ## **Acoustic configuration: compressor** soundproofing (SC) Ta (°C) = external exchanger inlet air temperature (D.B.) To (°C) = internal exchanger outlet water temperature - Standard unit operating range at full load - 2. Unit operating range with automatic staging of the compressor capacity - Standard unit operating range with air flow automatic modulation - Unit operating range in 'B Low water temperature' configuration (40% ethylene glycol) 4. - Unit operating range with 'REGBT device for the condensing coil partialization' 5. - Extended of operating range (extremely low water temperature option available on request) # **Acoustic configuration: super-silenced (EN)** Ta (°C)= entering external exchanger air temperature (D.B.) To (°C)= leaving internal exchanger water temperature - Standard unit operating range at full load - Extended operating range with air flow-rate automatic increasing. Inside this field the sound levels are the same of the 'compressor soundproofing (SC)' acoustic configuration - Unit operating range with compressor capacity automatic partialization. - 4. Standard unit operating range with air flow-rate automatic modulation $\label{eq:condition} % \[\begin{array}{c} (x,y) & (x,y) \\ &$ - 5. Operation field extension for unit in 'B - Low water temperature (Brine)' configuration (40% ethylene - 6. Unit operating range with 'REGBT - device for the condensing coil partialization' - Extended of operating range (extremely low water temperature option available on request) # **Admissible water flow-rates** Minimum (Qmin) and maximum (Qmax) admissible water flow for the unit to operate correctly. | EXCELLEN | ICE SC / EN | 90.4 | 100.4 | 110.4 | 120.4 | 140.4 | 160.4 | 180.4 | 200.4 | 220.4 | 240.4 | |----------|-------------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Qmin | [l/s] | 6,7 | 7,4 | 8,0 | 9,3 | 10,1 | 11,5 | 12,8 | 14,3 | 15,8 | 16,4 | | Qmax | [l/s] | 18,3 | 20,0 | 21,8 | 25,1 | 27,5 | 31,2 | 34,5 | 38,6 | 42,4 | 44,0 | | PREMIU | M SC / EN | 120.4 | 140.4 | 160.4 | 180.4 | 200.4 | 220.4 | 240.4 | |--------|-----------|-------|-------|-------|-------|-------|-------|-------| | Qmin | [l/s] | 8,0 | 9,3 | 10,1 | 11,5 | 12,8 | 14,3 | 15,8 | | Qmax | [l/s] | 21,8 | 25,1 | 27,5 | 31,2 | 34,5 | 38,6 | 42,4 | **Correction factors for glycol use** | <u>correction factors for give</u> | | | | | | | | | | |--|----|-------|-------|-------|-------|-------|-------|-------|-------| | % ethylene glycol by weight | | 5% | 10% | 15% | 20% | 25% | 30% | 35% | 40% | | Freezing temperature | °C | -2,0 | -3,9 | -6,5 | -8,9 | -11,8 | -15,6 | -19,0 | -23,4 | | Safety temperature | °C | 3,0 | 1,0 | -1,0 | -4,0 | -6,0 | -10,0 | -14,0 | -19,0 | | Cooling Capacity Factor | Nr | 0,997 | 0,994 | 0,99 | 0,986 | 0,981 | 0,976 | 0,970 | 0,964 | | Compressor power input Factor | Nr | 1,000 | 1,001 | 1,001 | 1,001 | 1,001 | 1,002 | 1,002 | 1,002 | | Internal exchanger glycol solution flow factor | Nr | 1,003 | 1,010 | 1,020 | 1,033 | 1,05 | 1,072 | 1,095 | 1,124 | | Pressure drop Factor | Nr | 0,989 | 0,983 | 0,979 | 0,980 | 0,984 | 0,993 | 1,004 | 1,020 | The correction factors shown refer to water and glycol ethylene mixes used to prevent the formation of frost on the exchangers in the water circuit during inactivity in winter. **Fouling Correction Factors** | | Internal o | exchanger | |----------------|------------|-----------| | m2 K/W | F1 | FK1 | | 0.44 x 10 (-4) | 1,0 | 1,0 | | 0.88 x 10 (-4) | 0,97 | 0,99 | | 1.76 x 10 (-4) | 0,94 | 0,98 | F1 = Cooling capacity correction factors # Overload and control device calibrations | | | open | closed | value | |---|-------|------|--------|-------| | High pressure safety pressure switch | [kPa] | 4050 | 3300 | - | | Antifreeze protection | [°C] | 3 | 5.5 | - | | High pressure safety valve | [kPa] | - | - | 4500 | | Low pressure safety valve | [kPa] | - | - | 2950 | | Max no. of compressor starts per hour | [n°] | - | - | 10 | | High compressor discharge temperature safety thermostat | [°C] | - | - | 140 | **Exchanger operating range** | | | Internal exchanger | | |----------|------|--------------------|------| | | D | Pr | DPw | | PED (CE) | 4500 | 4500 | 1000 | ${\sf DPr} = {\sf Maximum} \ {\sf operating} \ {\sf pressure} \ {\sf on} \ {\sf refrigerant} \ {\sf side} \ {\sf in} \ {\sf kPa}$ $\label{eq:DPw} DPw = \text{Maximum operating pressure on water side in kPa}$ FK1 = Compressor power input correction factor # **Acoustic configuration: compressor soundproofing (SC)** Cooling performance (continued) | ooming p | | | | | | Entering ex | ternal excha | nger air temp | erature (°C) | | | | nunued | |----------|---------|-----|-----|-----|-----|-------------|--------------|---------------|--------------|-----|------|------|--------| | Size | To (°C) | 2 | 5 | 3 | 0 | 3 | 5 | 4 | 0 | 4 | 8 | 5 | 52 | | | | kWf | kWe | | | 5 | 283 | 61 | 269 | 67 | 251 | 74 | 232 | 81 | 208 | 94 | 72.8 | 29 | | | 6 | 291 | 62 | 277 | 68 | 258 | 75 | 240 | 82 | 215 | 96 | 75.0 | 30 | | 00.4 | 7 | 301 | 63 | 284 | 68 | 268 | 75 | 249 | 83 | 226 | 97 | 79.1 | 30 | | 90.4 | 10 | 330 | 65 | 314 | 71 | 294 | 77 | 272 | 85 | 248 | 99 | 86.7 | 31 | | | 15 | 376 | 68 | 355 | 74 | 332 | 81 | 308 | 88 | 178 | 52 | - | - | | | 18 | 411 | 71 | 388 | 77 | 362 | 84 | 337 | 91 | 195 | 53 | - | - | | | 5 | 306 | 67 | 291 | 73 | 273 | 81 | 253 | 89 | 226 | 104 | 146 | 65 | | | 6 | 315 | 68 | 300 | 74 | 281 | 81 | 260 | 89 | 233 | 104 | 150 | 65 | | 100.4 | 7 | 326 | 69 | 308 | 75 | 291 | 82 | 271 | 90 | 242 | 106 | 156 | 66 | | 100.4 | 10 | 359 | 71 | 341 | 77 | 319 | 85 | 296 | 93 | 269 | 108 | 173 | 67 | | | 15 | 409 | 75 | 387 | 81 | 362 | 89 | 336 | 97 | 210 | 63 | - | - | | | 18 | 452 | 78 | 428 | 84 | 399 | 92 | 372 | 100 | 233 | 65 | - | - | | | 5 | 338 | 75 | 318 | 82 | 298 | 89 | 278 | 98 | 249 | 114 | 147 | 63 | | | 6 | 348 | 75 | 330 | 83 | 308 | 90 | 285 | 99 | 258 | 115 | 152 | 64 | | 110.4 | 7 | 357 | 76 | 339 | 83 | 318 | 91 | 297 | 100 | 271 | 116 | 159 | 65 | | 110.4 | 10 | 395 | 79 | 374 | 86 | 349 | 94 | 323 | 103 | 294 | 118 | 173 | 66 | | | 15 | 449 | 83 | 423 | 91 | 394 | 99 | 367 | 107 | 211 | 62 | - | - | | | 18 | 492 | 87 | 462 | 94 | 431 | 102 | 403 | 111 | 232 | 64 | - | - | | | 5 | 374 | 84 | 355 | 92 | 333 | 100 | 308 | 110 | 279 | 128 | 147 | 63 | | | 6 | 384 | 85 | 365 | 93 | 342 | 101 | 319 | 111 | 285 | 129 | 150 | 64 | | 120.4 | 7 | 398 | 86 | 378 | 94 | 354 | 102 | 332 | 113 | 301 | 131 | 158 | 64 | | 120.4 | 10 | 438 | 89 | 415 | 97 | 388 | 106 | 359 | 115 | 329 | 134 | 173 | 66 | | | 15 | 498 | 94 | 474 | 102 | 439 | 111 | 410 | 121 | 219 | 60 | - | - | | | 18 | 559 | 98 | 526 | 107 | 490 | 115 | 457 | 125 | 241 | 61 | - | - | | | 5 | 428 | 95 | 408 | 104 | 383 | 114 | 355 | 124 | 319 | 145 | 187 | 81 | | | 6 | 440 | 96 | 419 | 105 | 393 | 115 | 367 | 126 | 327 | 146 | 191 | 81 | | 140.4 | 7 | 456 | 98 | 433 | 106 | 407 | 116 | 382 | 127 | 344 | 148 | 201 | 82 | | 140.4 | 10 | 500 | 101 | 474 | 110 | 445 | 120 | 412 | 130 | 376 | 152 | 220 | 85 | | | 15 | 567 | 107 | 537 | 116 |
503 | 126 | 468 | 137 | 270 | 79.7 | - | - | | | 18 | 635 | 112 | 596 | 121 | 557 | 131 | 520 | 141 | 301 | 82 | - | - | | | 5 | 482 | 107 | 457 | 116 | 430 | 127 | 402 | 139 | 359 | 160 | 190 | 80 | | | 6 | 497 | 108 | 473 | 118 | 445 | 128 | 412 | 140 | 373 | 162 | 198 | 81 | | 160.4 | 7 | 514 | 110 | 486 | 119 | 460 | 130 | 429 | 142 | 385 | 163 | 204 | 81 | | 100.4 | 10 | 564 | 114 | 536 | 124 | 503 | 135 | 466 | 146 | 428 | 168 | 227 | 84 | | | 15 | 639 | 121 | 606 | 131 | 567 | 142 | 528 | 153 | 285 | 76 | - | - | | | 18 | 706 | 127 | 667 | 136 | 624 | 147 | 583 | 158 | 310 | 77 | - | - | | | 5 | 543 | 122 | 517 | 134 | 483 | 147 | 449 | 162 | 401 | 190 | 151 | 63 | | | 6 | 564 | 123 | 535 | 135 | 500 | 148 | 460 | 163 | 416 | 192 | 156 | 64 | | 180.4 | 7 | 577 | 124 | 549 | 136 | 515 | 150 | 476 | 165 | 430 | 194 | 162 | 65 | | 100.7 | 10 | 638 | 129 | 603 | 141 | 562 | 154 | 519 | 169 | 478 | 199 | 180 | 66 | | | 15 | 721 | 135 | 681 | 148 | 633 | 161 | 591 | 177 | 386 | 122 | - | - | | | 18 | 795 | 140 | 753 | 153 | 696 | 166 | 649 | 181 | 429 | 124 | - | - | kWf = Cooling capacity in kW. The data do not consider the part related to the pumps, required to overcome the pressure drop for the solution circulation inside the exchangers kWe = Compressor power input in kW To $(^{\circ}C) = \text{Leaving internal exchanger water temperature } (^{\circ}C) - \text{Performances in function of the inlet/outlet water temperature differential} = 5^{\circ}C$ **Cooling performance** | | | | | | | Entering ex | ternal excha | nger air temp | oerature (°C) | | | | | |-------|---------|-----|-----|-----|-----|-------------|--------------|---------------|---------------|-----|-----|-----|-----| | Size | To (°C) | 2 | 5 | 3 | 0 | 3 | 5 | 4 | 10 | 4 | 8 | 5 | 2 | | | | kWf | kWe | | | 5 | 603 | 133 | 576 | 146 | 540 | 160 | 500 | 175 | 442 | 203 | 271 | 126 | | | 6 | 620 | 135 | 593 | 147 | 555 | 161 | 517 | 176 | 455 | 205 | 279 | 127 | | 200.4 | 7 | 642 | 137 | 613 | 149 | 574 | 162 | 531 | 178 | 472 | 207 | 289 | 128 | | 200.4 | 10 | 698 | 142 | 658 | 153 | 617 | 167 | 574 | 183 | 513 | 211 | 314 | 131 | | | 15 | 798 | 150 | 751 | 162 | 706 | 177 | 657 | 191 | 368 | 111 | - | - | | | 18 | 858 | 156 | 812 | 168 | 760 | 182 | 706 | 197 | 401 | 113 | - | - | | | 5 | 658 | 148 | 627 | 162 | 590 | 178 | 548 | 196 | 485 | 229 | 273 | 125 | | | 6 | 679 | 150 | 647 | 164 | 605 | 179 | 562 | 197 | 500 | 231 | 281 | 126 | | 220.4 | 7 | 699 | 152 | 664 | 166 | 624 | 181 | 575 | 199 | 510 | 232 | 287 | 126 | | 220.4 | 10 | 739 | 155 | 700 | 169 | 661 | 185 | 613 | 204 | 549 | 235 | 309 | 128 | | | 15 | 806 | 161 | 767 | 175 | 723 | 192 | 681 | 212 | 394 | 123 | - | - | | | 18 | 864 | 166 | 825 | 181 | 773 | 197 | 719 | 218 | 429 | 126 | - | - | | | 5 | 728 | 162 | 692 | 178 | 647 | 195 | 595 | 215 | 528 | 252 | 276 | 123 | | | 6 | 748 | 164 | 711 | 179 | 663 | 197 | 614 | 217 | 544 | 254 | 284 | 124 | | 240.4 | 7 | 768 | 165 | 729 | 181 | 678 | 198 | 626 | 218 | 552 | 255 | 288 | 124 | | 240.4 | 10 | 805 | 168 | 760 | 184 | 710 | 201 | 661 | 223 | 582 | 258 | 304 | 126 | | | 15 | 882 | 175 | 835 | 191 | 787 | 210 | 728 | 229 | 388 | 116 | - | - | | | 18 | 951 | 181 | 904 | 197 | 840 | 215 | 778 | 234 | 416 | 118 | - | - | kWf = Cooling capacity in kW. The data do not consider the part related to the pumps, required to overcome the pressure drop for the solution circulation inside the exchangers kWe = Compressor power input in kW ## Internal exchanger pressure drop ## Acoustic configuration: compressor soundproofing (SC) The pressure drops are calculated considering a water temperature of 7°C Q = water flow-rate[I/s] DP = water side pressure drops (kPa) The water flow-rate must be calculated with the following formula #### $Q[I/s] = kWf/(4,186 \times DT)$ kWf = Cooling capacity in kW. DT = Temperature difference between inlet / outlet water To the internal exchanger pressure drops must be added the pressure drops of the steel mesh mechanical strainer that must be placed on the water input line. It is a device compulsory for the correct unit operation, and it is available as Clivet option (see the HYDRONIC ASSEMBLY ACCESSORIES). If the mechanical filter is selected and installed by the Customer, it is forbidden the use of filters with the mesh pitch higher than 1,6 mm, because they can cause a bad unit operation and also its serious damaging. To $(^{\circ}C)$ = Leaving internal exchanger water temperature $(^{\circ}C)$ - Performances in function of the inlet/outlet water temperature differential = $5^{\circ}C$ # **PREMIUM VERSION** # **Acoustic configuration: compressor soundproofing (SC)** **Cooling performance** | | | | | | E | intering ext | ernal exchar | nger air tem | perature (°C |) | | | | |-------|---------|------------|------------|------------|------------|--------------|--------------|--------------|--------------|-----|-----|------------|-----| | Size | To (°C) | 2 | 5 | 3 | 0 | 3 | 5 | 4 | 0 | 4 | 5 | 5 | 0 | | | | kWf | kWe | | | 5 | 360 | 89 | 339 | 98 | 315 | 107 | 293 | 118 | 278 | 129 | 146 | 64 | | | 6 | 370 | 90 | 348 | 99 | 326 | 108 | 301 | 118 | 287 | 130 | 151 | 64 | | 120.4 | 7 | 383 | 92 | 359 | 100 | 334 | 109 | 314 | 120 | 301 | 132 | 158 | 65 | | 120.4 | 10 | 421 | 95 | 394 | 104 | 367 | 113 | 341 | 123 | 329 | 136 | 173 | 67 | | | 15 | 473 | 101 | 443 | 110 | 412 | 119 | 394 | 130 | 219 | 61 | - | - | | | 18 | 510 | 106 | 480 | 115 | 446 | 124 | 431 | 135 | - | - | - | - | | | 5 | 408 | 103 | 386 | 112 | 359 | 122 | 333 | 133 | 314 | 146 | 183 | 81 | | | 6 | 421 | 104 | 396 | 113 | 369 | 124 | 344 | 135 | 327 | 148 | 191 | 82 | | 140.4 | 7 | 431 | 105 | 406 | 115 | 381 | 125 | 353 | 136 | 337 | 149 | 197 | 83 | | | 10 | 475 | 110 | 445 | 120 | 415 | 130 | 389 | 141 | 377 | 154 | 220 | 86 | | | 15 | 533 | 118 | 503 | 128 | 469 | 138 | 444 | 149 | 270 | 81. | - | - | | | 18 | 578 | 124 | 541 | 133 | 507 | 143 | 485 | 155 | - | - | - | - | | | 5 | 451 | 115 | 426 | 125 | 396 | 136 | 369 | 148 | 349 | 161 | 185 | 80 | | | 6 | 467 | 117 | 440 | 127 | 410 | 138 | 379 | 149 | 360 | 162 | 191 | 81 | | 160.4 | 7 | 479 | 119 | 451 | 128 | 423 | 140 | 394 | 151 | 379 | 165 | 201 | 82 | | | 10 | 526 | 124 | 493 | 134 | 458 | 145 | 428 | 156 | 417 | 171 | 221 | 85 | | | 15 | 592 | 133 | 554 | 143 | 516 | 154 | 488 | 165 | 278 | 77 | - | - | | | 18 | 638 | 140 | 597 | 150 | 559 | 160 | 538 | 173 | - | - | - | - | | | 5 | 531 | 129 | 500 | 142 | 465 | 156 | 434 | 173 | 402 | 190 | 151 | 63 | | | 6 | 545 | 130 | 517 | 144 | 480 | 158 | 444 | 174 | 417 | 192 | 157 | 64 | | 180.4 | 7 | 564 | 132 | 530 | 145 | 492 | 159 | 459 | 175 | 433 | 193 | 163 | 64 | | | 10 | 620 | 137 | 581 | 149 | 540 | 164 | 502 | 180 | 479 | 197 | 180 | 66 | | | | 696 | 144 | 652 | 157 | 605 | 171 | 572 | 187 | 387 | 121 | | - | | | 18 | 757
571 | 150
143 | 706
541 | 163
156 | 658
502 | 177
171 | 621
464 | 193
186 | 437 | 205 | - | 127 | | | 6 | 590 | 145 | 554 | 158 | 517 | 171 | 479 | 188 | 457 | 205 | 268
278 | 127 | | | 7 | 610 | 147 | 572 | 160 | 531 | 174 | 495 | 191 | 476 | 212 | 292 | 131 | | 200.4 | 10 | 662 | 153 | 622 | 166 | 579 | 180 | 539 | 197 | 517 | 217 | 317 | 134 | | | 15 | 747 | 163 | 696 | 176 | 653 | 191 | 614 | 208 | 399 | 123 | - | - | | | 18 | 797 | 171 | 746 | 183 | 702 | 197 | 674 | 217 | - | - | _ | _ | | | 5 | 641 | 158 | 602 | 174 | 563 | 189 | 519 | 207 | 485 | 228 | 273 | 124 | | | 6 | 663 | 160 | 622 | 175 | 578 | 191 | 534 | 210 | 501 | 231 | 282 | 126 | | | 7 | 679 | 162 | 640 | 177 | 596 | 193 | 551 | 212 | 520 | 233 | 293 | 127 | | 220.4 | 10 | 743 | 169 | 697 | 184 | 648 | 200 | 600 | 218 | 575 | 242 | 324 | 132 | | | 15 | 835 | 180 | 784 | 195 | 728 | 211 | 684 | 229 | 412 | 127 | - | - | | | 18 | 900 | 188 | 841 | 202 | 784 | 218 | 743 | 238 | - | - | - | _ | | | 5 | 697 | 172 | 656 | 188 | 613 | 206 | 564 | 225 | 522 | 248 | 273 | 121 | | | 6 | 719 | 174 | 677 | 190 | 628 | 208 | 582 | 228 | 539 | 251 | 282 | 123 | | | 7 | 736 | 176 | 694 | 192 | 648 | 210 | 604 | 231 | 558 | 254 | 292 | 124 | | 240.4 | 10 | 806 | 184 | 757 | 200 | 707 | 217 | 649 | 237 | 605 | 259 | 316 | 127 | | | 15 | 907 | 196 | 855 | 213 | 794 | 230 | 738 | 249 | 403 | 116 | - | - | | | 18 | 981 | 206 | 919 | 221 | 854 | 238 | 801 | 258 | - | - | - | - | kWf = Cooling capacity in kW. The data do not consider the part related to the pumps, required to overcome the pressure drop for the solution circulation inside the exchangers kWe = Compressor power input in kW To (°C) = Leaving internal exchanger water temperature (°C) - Performances in function of the inlet/outlet water temperature differential = 5° C # **Internal exchanger pressure drop** ## Acoustic configuration: compressor soundproofing (SC) The pressure drops are calculated considering a water temperature of 7°C Q = water flow-rate[I/s] DP = water side pressure drops (kPa) The water flow-rate must be calculated with the following formula ## $Q[I/s] = kWf/(4,186 \times DT)$ kWf = Cooling capacity in kW. DT = Temperature difference between inlet / outlet water To the internal exchanger pressure drops must be added the pressure drops of the steel mesh mechanical strainer that must be placed on the water input line. It is a device compulsory for the correct unit operation, and it is available as Clivet option (see the HYDRONIC ASSEMBLY ACCESSORIES). If the mechanical filter is selected and installed by the Customer, it is forbidden the use of filters with the mesh pitch higher than 1,6 mm, because they can cause a bad unit operation and also its serious damaging. # **Acoustic configuration: super-silenced (EN)** Cooling performance (continued) | ooming p | | | | | | Entering ex | ternal excha | nger air temp | erature (°C) | | | - | ntinued | |----------|---------|-----|-----|-----|-----|-------------|--------------|---------------|--------------|-----|-----|------|---------| | Size | To (°C) | 2 | 5 | 3 | 0 |
3 | 5 | 4 | 0 | 4 | 8 | 5 | 2 | | | | kWf | kWe | | | 5 | 277 | 64 | 261 | 70 | 244 | 76 | 226 | 84 | 208 | 95 | 72.7 | 30 | | | 6 | 284 | 64 | 269 | 71 | 252 | 77 | 233 | 85 | 214 | 96 | 74.9 | 30 | | 00.4 | 7 | 294 | 65 | 278 | 71 | 259 | 78 | 240 | 86 | 226 | 97 | 78.9 | 30 | | 90.4 | 10 | 323 | 67 | 304 | 74 | 284 | 81 | 264 | 88 | 248 | 99 | 86.6 | 31 | | | 15 | 368 | 71 | 344 | 78 | 321 | 85 | 299 | 92 | 178 | 52 | - | - | | | 18 | 401 | 74 | 374 | 81 | 348 | 88 | 329 | 95 | 195 | 53 | - | - | | | 5 | 298 | 69 | 282 | 76 | 264 | 83 | 244 | 91 | 225 | 103 | 145 | 65 | | | 6 | 307 | 70 | 290 | 77 | 273 | 84. | 252 | 92 | 232 | 104 | 150 | 65 | | 100.4 | 7 | 317 | 71 | 300 | 78 | 280 | 85 | 261 | 93 | 241 | 105 | 156 | 66 | | 100.4 | 10 | 348 | 74 | 328 | 80 | 308 | 88 | 284 | 96 | 268 | 108 | 173 | 67 | | | 15 | 397 | 78 | 374 | 85 | 348 | 93 | 325 | 101 | 209 | 63 | - | - | | | 18 | 437 | 82 | 410 | 89 | 385 | 97 | 360 | 105 | 232 | 65 | - | - | | | 5 | 327 | 78 | 309 | 85 | 288 | 93 | 266 | 101 | 247 | 114 | 146 | 63 | | | 6 | 336 | 79 | 317 | 86 | 297 | 94 | 275 | 103 | 257 | 115 | 151 | 64 | | 110.4 | 7 | 348 | 80 | 328 | 87 | 307 | 95 | 284 | 104 | 269 | 116 | 158 | 65 | | 110.4 | 10 | 380 | 83 | 357 | 90 | 332 | 98 | 309 | 107 | 292 | 118 | 172 | 66 | | | 15 | 432 | 88 | 405 | 95 | 377 | 103 | 355 | 112 | 210 | 62 | - | - | | | 18 | 471 | 91 | 441 | 90 | 415 | 107 | 389 | 116 | 231 | 63 | - | - | | | 5 | 360 | 88 | 340 | 96 | 320 | 106 | 295 | 115 | 276 | 129 | 145 | 64 | | | 6 | 373 | 89 | 352 | 98 | 328 | 107 | 303 | 117 | 283 | 130 | 149 | 64 | | 120.4 | 7 | 383 | 90 | 361 | 99 | 341 | 108 | 316 | 118 | 298 | 132 | 157 | 65 | | 120.4 | 10 | 423 | 94 | 397 | 102 | 369 | 112 | 343 | 122 | 326 | 134 | 172 | 66 | | | 15 | 478 | 100 | 448 | 108 | 417 | 118 | 391 | 128 | 217 | 60 | - | - | | | 18 | 529 | 104 | 495 | 113 | 462 | 122 | 437 | 133 | 239 | 61 | - | - | | | 5 | 418 | 99 | 396 | 108 | 371 | 118 | 346 | 129 | 319 | 145 | 186 | 81 | | | 6 | 433 | 100 | 410 | 109 | 383 | 119 | 355 | 130 | 327 | 146 | 191 | 81 | | 140.4 | 7 | 445 | 101 | 420 | 111 | 393 | 120 | 369 | 132 | 344 | 148 | 201 | 82 | | 140.4 | 10 | 490 | 106 | 462 | 115 | 431 | 125 | 401 | 136 | 376 | 152 | 220 | 85 | | | 15 | 553 | 112 | 520 | 122 | 486 | 131 | 455 | 143 | 270 | 80 | - | - | | | 18 | 610 | 117 | 574 | 127 | 537 | 136 | 506 | 148 | 301 | 82 | - | - | | | 5 | 467 | 112 | 442 | 122 | 414 | 133 | 386 | 145 | 355 | 161 | 188 | 81 | | | 6 | 479 | 114 | 454 | 124 | 428 | 135 | 396 | 146 | 369 | 163 | 195 | 81 | | 160.4 | 7 | 496 | 115 | 470 | 125 | 438 | 136 | 409 | 148 | 381 | 165 | 202 | 82 | | 100.4 | 10 | 541 | 120 | 512 | 130 | 478 | 141 | 444 | 153 | 423 | 170 | 224 | 85 | | | 15 | 615 | 129 | 580 | 139 | 541 | 149 | 507 | 161 | 282 | 76 | - | - | | | 18 | 675 | 134 | 634 | 145 | 593 | 155 | 560 | 167 | 307 | 77 | - | - | | | 5 | 531 | 130 | 501 | 143 | 465 | 157 | 431 | 173 | 400 | 193 | 151 | 64 | | | 6 | 544 | 131 | 513 | 144 | 479 | 159 | 442 | 174 | 415 | 195 | 156 | 65 | | 180.4 | 7 | 563 | 133 | 529 | 146 | 491 | 160 | 459 | 176 | 429 | 196 | 161 | 65 | | 100.7 | 10 | 612 | 138 | 579 | 151 | 537 | 165 | 497 | 181 | 477 | 201 | 179 | 67 | | | 15 | 694 | 146 | 648 | 159 | 602 | 173 | 566 | 189 | 385 | 124 | - | - | | | 18 | 761 | 152 | 711 | 165 | 661 | 179 | 630 | 195 | 428 | 126 | - | - | kWf = Cooling capacity in kW. The data do not consider the part related to the pumps, required to overcome the pressure drop for the solution circulation inside the exchangers kWe = Compressor power input in kW To $(^{\circ}C) = \text{Leaving internal exchanger water temperature } (^{\circ}C) - \text{Performances in function of the inlet/outlet water temperature differential} = 5^{\circ}C$ ## **Acoustic configuration: super-silenced (EN)** **Cooling performance** | | To (°C) | Entering external exchanger air temperature (°C) | | | | | | | | | | | | | | |-------|---------|--|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|--| | Size | | 25 | | 30 | | 3 | 5 | 40 | | 48 | | 52 | | | | | | | kWf | kWe | | | | | 5 | 585 | 140 | 555 | 152 | 518 | 167 | 481 | 182 | 438 | 204 | 269 | 126 | | | | | 6 | 604 | 142 | 573 | 155 | 535 | 169 | 494 | 184 | 452 | 206 | 277 | 127 | | | | 200.4 | 7 | 620 | 144 | 589 | 156 | 549 | 170 | 508 | 186 | 468 | 208 | 287 | 128 | | | | 200.4 | 10 | 673 | 148 | 637 | 161 | 593 | 175 | 549 | 191 | 509 | 213 | 312 | 131 | | | | | 15 | 766 | 158 | 720 | 172 | 671 | 185 | 626 | 200 | 393 | 120 | - | - | | | | | 18 | 838 | 164 | 793 | 178 | 741 | 192 | 689 | 206 | 436 | 122 | - | - | | | | | 5 | 642 | 156 | 607 | 171 | 568 | 188 | 523 | 205 | 484 | 230 | 273 | 125 | | | | | 6 | 661 | 158 | 624 | 173 | 582 | 189 | 539 | 207 | 498 | 232 | 281 | 126 | | | | 220.4 | 7 | 677 | 159 | 642 | 175 | 599 | 191 | 551 | 209 | 509 | 233 | 286 | 127 | | | | 220.4 | 10 | 716 | 163 | 672 | 178 | 624 | 194 | 575 | 212 | 547 | 236 | 308 | 128 | | | | | 15 | 780 | 170 | 736 | 185 | 687 | 202 | 643 | 220 | 393 | 124 | - | - | | | | | 18 | 863 | 176 | 812 | 191 | 762 | 209 | 711 | 226 | 441 | 126 | - | - | | | | | 5 | 700 | 171 | 660 | 188 | 615 | 207 | 565 | 227 | 527 | 254 | 275 | 124 | | | | | 6 | 718 | 173 | 676 | 190 | 630 | 209 | 580 | 229 | 542 | 255 | 283 | 125 | | | | 240.4 | 7 | 736 | 175 | 695 | 192 | 642 | 210 | 591 | 230 | 550 | 256 | 287 | 125 | | | | 240.4 | 10 | 773 | 178 | 723 | 195 | 670 | 214 | 616 | 233 | 580 | 260 | 303 | 127 | | | | | 15 | 841 | 186 | 790 | 203 | 738 | 222 | 692 | 243 | 387 | 117 | - | - | | | | | 18 | 941 | 193 | 881 | 210 | 817 | 228 | 773 | 248 | 431 | 118 | - | - | | | kWf = Cooling capacity in kW. The data do not consider the part related to the pumps, required to overcome the pressure drop for the solution circulation inside the exchangers kWe = Compressor power input in kW ## Internal exchanger pressure drop ## Acoustic configuration: super-silenced (EN) The pressure drops are calculated considering a water temperature of 7°C Q = water flow-rate[l/s] DP = water side pressure drops (kPa) The water flow-rate must be calculated with the following formula #### $Q[I/s] = kWf/(4,186 \times DT)$ $kWf = Cooling\ capacity\ in\ kW.$ $DT = Temperature\ difference\ between\ inlet\ /\ outlet\ water$ To the internal exchanger pressure drops must be added the pressure drops of the steel mesh mechanical strainer that must be placed on the water input line. It is a device compulsory for the correct unit operation, and it is available as Clivet option (see the HYDRONIC ASSEMBLY ACCESSORIES). If the mechanical filter is selected and installed by the Customer, it is forbidden the use of filters with the mesh pitch higher than 1,6 mm, because they can cause a bad unit operation and also its serious damaging. $To\ (^\circ C) = Leaving\ internal\ exchanger\ water\ temperature\ (^\circ C)\ -\ Performances\ in\ function\ of\ the\ inlet/outlet\ water\ temperature\ differential\ =\ 5^\circ C$ # **PREMIUM VERSION** # **Acoustic configuration: super-silenced (EN)** **Cooling performance** | | | | | | | Entering ext | ernal exchai | nger air tem | perature (°C | :) | | | | |-------|---------|-----|-----|-----|-----|--------------|--------------|--------------|--------------|-----|-----|-----|-----| | Size | To (°C) | 25 | | 30 | | 3 | 5 | 40 | | 45 | | 50 | | | | | kWf | kWe | | | 5 | 350 | 93 | 328 | 102 | 304 | 111 | 283 | 122 | 277 | 129 | 146 | 63 | | | 6 | 359 | 94 | 337 | 103 | 312 | 113 | 293 | 123 | 286 | 130 | 151 | 64 | | 120.4 | 7 | 371 | 96 | 347 | 104 | 322 | 114 | 304 | 125 | 300 | 132 | 158 | 65 | | | 10 | 404 | 100 | 377 | 109 | 352 | 118 | 335 | 129 | 329 | 135 | 173 | 66 | | | 15 | 455 | 106 | 425 | 115 | 398 | 125 | 378 | 135 | 219 | 61 | - | - | | | 18 | 488 | 111 | 456 | 120 | 434 | 130 | 404 | 139 | - | - | - | - | | | 5 | 396 | 107 | 372 | 117 | 345 | 127 | 325 | 138 | 315 | 144 | 184 | 81 | | | 6 | 406 | 109 | 384 | 118 | 356 | 128 | 334 | 140 | 328 | 146 | 191 | 82 | | 140.4 | 7 | 419 | 110 | 392 | 120 | 365 | 130 | 343 | 141 | 338 | 148 | 198 | 82 | | 170.7 | 10 | 459 | 116 | 429 | 125 | 400 | 136 | 379 | 147 | 378 | 153 | 221 | 85 | | | 15 | 512 | 124 | 479 | 133 | 451 | 143 | 432 | 155 | 271 | 80 | - | - | | | 18 | 553 | 130 | 518 | 140 | 490 | 150 | 464 | 160 | - | - | - | - | | | 5 | 434 | 120 | 406 | 131 | 378 | 141 | 356 | 154 | 352 | 160 | 186 | 80 | | | 6 | 448 | 122 | 420 | 133 | 390 | 143 | 365 | 155 | 363 | 162 | 192 | 81 | | 160.4 | 7 | 459 | 124 | 429 | 134 | 405 | 146 | 381 | 158 | 382 | 164 | 202 | 82 | | 100.4 | 10 | 502 | 130 | 469 | 141 | 437 | 152 | 415 | 163 | 420 | 170 | 223 | 85 | | | 15 | 560 | 140 | 524 | 150 | 494 | 160 | 468 | 175 | 280 | 76 | - | - | | | 18 | 606 | 147 | 567 | 157 | 537 | 168 | 500 | 181 | - | - | - | - | | | 5 | 516 | 135 | 482 | 148 | 445 | 163 | 413 | 179 | 399 | 190 | 150 | 63 | | | 6 | 528 | 137 | 494 | 150 | 457 | 164 | 427 | 181 | 413 | 192 | 156 | 64 | | 180.4 | 7 | 545 | 138 | 510 | 152 | 471 | 166 | 441 | 182 | 429 | 193 | 161 | 64 | | 100.7 | 10 | 592 | 143 | 554 | 157 | 513 | 171 | 482 | 187 | 475 | 197 | 178 | 66 | | | 15 | 666 | 152 | 619 | 166 | 582 | 180 | 555 | 196 | 383 | 121 | - | - | | | 18 | 714 | 158 | 665 | 171 | 628 | 185 | 600 | 205 | - | - | - | - | | | 5 | 545 | 153 | 511 | 166 | 474 | 180 | 442 | 197 | 430 | 208 | 264 | 128 | | | 6 | 563 | 155 | 528 | 168 | 489 | 183 | 456 | 199 | 448 | 209 | 274 | 129 | | 200.4 | 7 | 577 | 157 | 538 | 170 | 504 | 185 | 477 | 203 | 469 | 214 | 287 | 132 | | 20011 | 10 | 627 | 164 | 587 | 177 | 546 | 192 | 516 | 210 | 510 | 220 | 312 | 136 | | | 15 | 701 | 175 | 653 | 188 | 617 | 203 | 580 | 223 | 393 | 124 | - | - | | | 18 | 747 | 183 | 703 | 196 | 665 | 212 | 619 | 228 | - | - | - | - | | | 5 | 619 | 165 | 579 | 180 | 536 | 197 | 498 | 216 | 481 | 228 | 271 | 124 | | | 6 | 636 | 167 | 595 | 182 | 553 | 199 | 514 | 218 | 497 | 230 | 280 | 125 | | 220.4 | 7 | 658 | 170 | 615 | 185 | 573 | 202 | 530 |
220 | 516 | 232 | 291 | 127 | | | 10 | 712 | 177 | 663 | 192 | 616 | 209 | 578 | 228 | 571 | 241 | 321 | 131 | | | 15 | 795 | 189 | 743 | 204 | 694 | 220 | 651 | 239 | 409 | 126 | - | - | | | 18 | 854 | 198 | 798 | 212 | 749 | 229 | 695 | 245 | - | - | - | - | | | 5 | 665 | 181 | 625 | 198 | 579 | 215 | 536 | 236 | 515 | 248 | 269 | 121 | | | 6 | 681 | 184 | 644 | 200 | 597 | 218 | 551 | 239 | 532 | 251 | 278 | 123 | | 240.4 | 7 | 700 | 186 | 660 | 203 | 614 | 221 | 568 | 242 | 551 | 254 | 288 | 124 | | | 10 | 766 | 194 | 713 | 211 | 661 | 229 | 617 | 251 | 597 | 259 | 312 | 127 | | | 15 | 856 | 208 | 798 | 224 | 745 | 242 | 695 | 267 | 398 | 116 | - | - | | | 18 | 922 | 218 | 860 | 234 | 803 | 251 | 742 | 276 | - | - | - | - | kWf = Cooling capacity in kW. The data do not consider the part related to the pumps, required to overcome the pressure drop for the solution circulation inside the exchangers kWe = Compressor power input in kW To (°C) = Leaving internal exchanger water temperature (°C) - Performances in function of the inlet/outlet water temperature differential = 5° C # **Internal exchanger pressure drop** ## Acoustic configuration: super-silenced (EN) The pressure drops are calculated considering a water temperature of 7°C Q = water flow-rate[I/s] DP = water side pressure drops (kPa) The water flow-rate must be calculated with the following formula #### $Q[I/s] = kWf/(4,186 \times DT)$ kWf = Cooling capacity in kW. DT = Temperature difference between inlet / outlet water To the internal exchanger pressure drops must be added the pressure drops of the steel mesh mechanical strainer that must be placed on the water input line. It is a device compulsory for the correct unit operation, and it is available as Clivet option (see the HYDRONIC ASSEMBLY ACCESSORIES). If the mechanical filter is selected and installed by the Customer, it is forbidden the use of filters with the mesh pitch higher than 1,6 mm, because they can cause a bad unit operation and also its serious damaging. # **Acoustic configuration: compressor soundproofing (SC)** **Cooling performance at part load** | 2001111 | g perfo | IIIIaiiC | e at par | tioau | | | | | | | | | | | | | |---------|------------|----------|----------|--------------|------------|----------|-----------------|---|----------|--------------|------------|---------|--------------|--|--|--| | 61 | 11 | | 3506 | | | | external exchai | external exchanger air temperature (°C) | | | | | | | | | | Size | Load | 35°C | | | 30°C | | | 25°C | | | 20°C | | | | | | | | 1000/ | kWf | kWe_tot | EER | kWf | kWe_tot | EER 2.67 | kWf | kWe_tot | EER | kWf | kWe_tot | EER | | | | | | 100% | 268 | 85 | 3,16 | 284 | 77 | 3,67 | 301 | 72 | 4,19 | 319 | 63 | 5,08 | | | | | 90.4 | 75%
50% | 201 | 53
36 | 3,79 | 213
142 | 49
34 | 4,34 | 226
151 | 46
32 | 4,89
4,78 | 239
159 | 30 | 5,40
5,37 | | | | | 90.4 | 25% | 67 | 19 | 3,68
3,60 | 71 | 17 | 4,21
4,13 | 75 | 16 | 4,78 | 80 | 15 | 5,35 | | | | | | Minimum | 54 | 15 | 3,61 | 57 | 14 | 4,13 | 59 | 13 | 4,67 | 61 | 11 | 5,35 | | | | | | 100% | 291 | 92 | 3,17 | 308 | 84 | 3,68 | 326 | 78 | 4,20 | 342 | 70 | 4,91 | | | | | | 75% | 218 | 59 | 3,69 | 231 | 55 | 4,24 | 245 | 52 | 4,75 | 257 | 49 | 5,27 | | | | | 100.4 | 50% | 145 | 39 | 3,76 | 154 | 36 | 4,27 | 163 | 34 | 4,74 | 171 | 33 | 5,26 | | | | | 100.1 | 25% | 73 | 19 | 3,77 | 77 | 18 | 4,25 | 82 | 17 | 4,72 | 86 | 16 | 5,22 | | | | | | Minimum | 68 | 18 | 3,76 | 71 | 17 | 4,25 | 74 | 16 | 4,71 | 78 | 15 | 5,23 | | | | | | 100% | 318 | 101 | 3,15 | 339 | 92 | 3,67 | 357 | 85 | 4,19 | 382 | 76 | 5,02 | | | | | | 75% | 238 | 64 | 3,72 | 254 | 60 | 4,25 | 268 | 56 | 4,80 | 287 | 54 | 5,33 | | | | | 110.4 | 50% | 159 | 41 | 3,92 | 169 | 38 | 4,42 | 179 | 36 | 4,97 | 191 | 35 | 5,47 | | | | | | 25% | - | - | - | - | - | - | - | - | - | - | - | - | | | | | | Minimum | 84 | 22 | 3,91 | 89 | 20 | 4,43 | 92 | 19 | 4,96 | 96 | 17 | 5,48 | | | | | | 100% | 354 | 112 | 3,16 | 378 | 103 | 3,67 | 398 | 95 | 4,19 | 426 | 84 | 5,09 | | | | | | 75% | 265 | 72 | 3,69 | 284 | 67 | 4,25 | 299 | 62 | 4,79 | 319 | 60 | 5,31 | | | | | 120.4 | 50% | 177 | 45 | 3,98 | 189 | 42 | 4,53 | 199 | 39 | 5,08 | 213 | 38 | 5,65 | | | | | | 25% | - | - | - | - | - | - | - | - | - | - | - | - | | | | | | Minimum | 106 | 27 | 3,98 | 112 | 25 | 4,53 | 117 | 23 | 5,08 | 121 | 22 | 5,64 | | | | | | 100% | 407 | 129 | 3,16 | 433 | 119 | 3,64 | 456 | 110 | 4,15 | 482 | 98 | 4,90 | | | | | | 75% | 305 | 84 | 3,63 | 325 | 79 | 4,11 | 342 | 74 | 4,62 | 362 | 71 | 5,11 | | | | | 140.4 | 50% | 203 | 53 | 3,82 | 216 | 50 | 4,33 | 228 | 47 | 4,85 | 241 | 45 | 5,34 | | | | | | 25% | - | - | - | - | - | - | - | - | - | - | - | - | | | | | | Minimum | 108 | 28 | 3,85 | 114 | 26 | 4,37 | 119 | 24 | 4,88 | 115 | 23 | 5,04 | | | | | | 100% | 460 | 144 | 3,19 | 486 | 132 | 3,68 | 514 | 122 | 4,21 | 545 | 108 | 5,05 | | | | | | 75% | 345 | 92 | 3,74 | 365 | 86 | 4,24 | 385 | 82 | 4,72 | 409 | 78 | 5,23 | | | | | 160.4 | 50% | 230 | 58 | 3,95 | 243 | 55 | 4,45 | 257 | 52 | 4,95 | 273 | 51 | 5,40 | | | | | | 25% | - | - | - | - | - | - | - | - | - | - | - | - | | | | | | Minimum | 137 | 35 | 3,95 | 144 | 32 | 4,45 | 149 | 30 | 4,95 | 144 | 28 | 5,05 | | | | | | 100% | 515 | 164 | 3,14 | 549 | 149 | 3,68 | 577 | 137 | 4,21 | 612 | 121 | 5,06 | | | | | | 75% | 387 | 99 | 3,89 | 412 | 93 | 4,43 | 433 | 87 | 4,98 | 459 | 83 | 5,53 | | | | | 180.4 | 50% | 258 | 65 | 3,96 | 274 | 61 | 4,48 | 289 | 57 | 5,03 | 306 | 55 | 5,57 | | | | | | 25% | 129 | 32 | 3,99 | 137 | 30 | 4,51 | 144 | 29 | 5,03 | 153 | 28 | 5,54 | | | | | | Minimum | 111 | 28 | 3,98 | 117 | 26 | 4,52 | 122 | 24 | 5,04 | 126 | 23 | 5,56 | | | | | | 100% | 574 | 179 | 3,21 | 613 | 164 | 3,74 | 642 | 153 | 4,20 | 677 | 134 | 5,05 | | | | | | 75% | 431 | 112 | 3,85 | 460 | 106 | 4,34 | 481 | 98 | 4,89 | 508 | 94 | 5,39 | | | | | 200.4 | 50% | 287 | 74 | 3,90 | 306 | 70 | 4,38 | 321 | 66 | 4,89 | 339 | 63 | 5,38 | | | | | | 25% | 144 | 37 | 3,91 | 153 | 35 | 4,37 | 160 | 33 | 4,83 | 169 | 32 | 5,30 | | | | | | Minimum | 139 | 36 | 3,90 | 146 | 33 | 4,37 | 151 | 31 | 4,84 | 157 | 30 | 5,31 | | | | | | 100% | 624 | 197 | 3,17 | 664 | 182 | 3,65 | 699 | 168 | 4,16 | 739 | 148 | 4,99 | | | | | | 75% | 468 | 136 | 3,44 | 498 | 125 | 3,98 | 524 | 118 | 4,44 | 554 | 111 | 4,99 | | | | | 220.4 | 50% | 312 | 81 | 3,83 | 332 | 76 | 4,35 | 350 | 72 | 4,87 | 369 | 69 | 5,37 | | | | | | 25% | - | - | - | - | - | - | - | - | - | - | - | - | | | | | | Minimum | 199 | 52 | 3,83 | 209 | 48 | 4,35 | 217 | 45 | 4,87 | 225 | 42 | 5,38 | | | | | | 100% | 678 | 215 | 3,15 | 729 | 197 | 3,70 | 768 | 181 | 4,24 | 812 | 162 | 5,01 | | | | | | 75% | 508 | 187 | 2,72 | 547 | 173 | 3,16 | 576 | 160 | 3,60 | 609 | 147 | 4,14 | | | | | 240.4 | 50% | 339 | 98,2 | 3,45 | 364 | 90,5 | 4,02 | 384 | 83,7 | 4,59 | 406 | 78,3 | 5,19 | | | | | | 25% | - | - | - | - | - | - | - | - | - | - | - | - | | | | | | Minimum | 181 | 52,5 | 3,45 | 194 | 48,2 | 4,02 | 204 | 44,6 | 4,57 | 213 | 41,1 | 5,18 | | | | kWf = Cooling capacity in kW kWe_tot = Unit total power input in kW Load = % of cooling capacity compared to the value at full load Internal exchanger water = output temperature 7° C/ input * (variable) / constant flow equal to the nominal value. # **PREMIUM VERSION** # **Acoustic configuration: compressor soundproofing (SC)** Cooling performance at part load | Coom | Perro | Entering external exchanger air temperature (°C) | | | | | | | | | | | | | |-------|---------|--|---------|------|------|---------|------|-----|---------|------|------|---------|------|--| | Size | Load | 35°C | | | 30°C | | | | 25°C | | 20°C | | | | | | | kWf | kWe_tot | EER | | | | 100% | 334 | 118 | 2,83 | 359 | 109 | 3,29 | 383 | 100 | 3,83 | 421 | 85 | 4,94 | | | | 75% | 251 | 68 | 3,71 | 270 | 63 | 4,27 | 287 | 60 | 4,78 | 315 | 67 | 4,73 | | | 120.4 | 50% | 167 | 42 | 3,99 | 180 | 40 | 4,56 | 191 | 37 | 5,12 | 210 | 37 | 5,71 | | | | 25% | - | - | - | - | - | - | - | - | - | - | - | - | | | | Minimum | 105 | 26 | 3,99 | 110 | 24 | 4,55 | 116 | 23 | 5,13 | 120 | 21 | 5,71 | | | | 100% | 381 | 135 | 2,82 | 406 | 124 | 3,27 | 431 | 115 | 3,75 | 463 | 102 | 4,54 | | | | 75% | 286 | 78 | 3,65 | 305 | 74 | 4,13 | 324 | 70 | 4,62 | 347 | 68 | 5,09 | | | 140.4 | 50% | 190 | 49 | 3,92 | 203 | 46 | 4,40 | 216 | 44 | 4,88 | 232 | 43 | 5,37 | | | | 25% | - | - | - | - | - | - | - | - | - | - | - | - | | | | Minimum | 98 | 25 | 3,92 | 102 | 23 | 4,40 | 106 | 22 | 4,87 | 110 | 21 | 5,36 | | | | 100% | 423 | 149 | 2,84 | 451 | 138 | 3,27 | 479 | 128 | 3,74 | 526 | 108 | 4,87 | | | | 75% | 317 | 84 | 3,76 | 339 | 79 | 4,29 | 359 | 76 | 4,75 | 395 | 84 | 4,71 | | | 160.4 | 50% | 212 | 52 | 4,08 | 226 | 49 | 4,62 | 240 | 46 | 5,17 | 263 | 46 | 5,75 | | | | 25% | - | - | - | - | - | - | - | - | - | - | - | - | | | | Minimum | 133 | 33 | 4,08 | 139 | 30 | 4,61 | 145 | 28 | 5,16 | 150 | 26 | 5,76 | | | | 100% | 492 | 171 | 2,88 | 530 | 157 | 3,38 | 564 | 144 | 3,92 | 605 | 128 | 4,73 | | | | 75% | 369 | 100 | 3,69 | 398 | 94 | 4,24 | 423 | 88 | 4,79 | 454 | 86 | 5,29 | | | 180.4 | 50% | 246 | 62 | 3,97 | 265 | 59 | 4,51 | 282 | 56 | 5,03 | 303 | 55 | 5,54 | | | | 25% | - | - | - | - | - | - | - | - | - | - | - | - | | | | Minimum | 127 | 32 | 3,97 | 133 | 30 | 4,51 | 139 | 28 | 5,03 | 144 | 26 | 5,53 | | | | 100% | 531 | 186 | 2,85 | 572 | 172 | 3,33 | 610 | 159 | 3,84 | 654 | 141 | 4,64 | | | | 75% | 398 | 108 | 3,69 | 429 | 102 | 4,21 | 457 | 97 | 4,72 | 491 | 94 | 5,21 | | | 200.4 | 50% | 265 | 67 | 3,97 | 286 | 64 | 4,50 | 305 | 61 | 5,01 | 327 | 59 | 5,51 | | | | 25% | - | - | - | - | - | - | - | - | - | - | - | - | | | | Minimum | 137 | 34 | 3,98 | 144 | 32 | 4,50 | 150 | 30 | 5,01 | 156 | 28 | 5,52 | | | | 100% | 596 | 208 | 2,87 | 640 | 192 | 3,33 | 679 | 177 | 3,84 | 729 | 157 | 4,64 | | | | 75% | 447 | 122 |
3,66 | 480 | 115 | 4,17 | 509 | 109 | 4,67 | 547 | 106 | 5,16 | | | 220.4 | 50% | 298 | 76 | 3,93 | 320 | 72 | 4,43 | 340 | 69 | 4,91 | 365 | 68 | 5,41 | | | | 25% | - | - | - | - | - | - | - | - | - | - | - | - | | | | Minimum | 153 | 39 | 3,93 | 161 | 36 | 4,43 | 167 | 34 | 4,91 | 173 | 32 | 5,40 | | | | 100% | 648 | 226 | 2,87 | 694 | 208 | 3,34 | 736 | 192 | 3,83 | 809 | 162 | 4,99 | | | | 75% | 486 | 128 | 3,80 | 521 | 120 | 4,34 | 552 | 114 | 4,84 | 607 | 127 | 4,78 | | | 240.4 | 50% | 324 | 79 | 4,09 | 347 | 75 | 4,65 | 368 | 70 | 5,23 | 404 | 69 | 5,82 | | | | 25% | - | - | - | - | - | - | - | - | - | - | - | - | | | | Minimum | 203 | 50 | 4,09 | 213 | 46 | 4,65 | 222 | 43 | 5,23 | 230 | 40 | 5,83 | | $kWf = Cooling\ capacity\ in\ kW \\ Load = \%\ of\ cooling\ capacity\ compared\ to\ the\ value\ at\ full\ load \\ Internal\ exchanger\ water = \ output\ temperature\ 7^\circ C/\ input\ *\ (variable)\ /\ constant\ flow\ equal\ to\ the\ nominal\ value.$ # **EXCELLENCE VERSION** **Acoustic configuration: super-silenced (EN)** **Cooling performance at part load** | | | | | | | Entering | external excha | nger air tempe | rature (°C) | | | | | |-------|-------------|-----|---------|------|-----|----------|----------------|----------------|-------------|------|-----|---------|------| | Size | Load | | 35°C | | | 30°C | | | 25°C | | | 20°C | | | | | kWf | kWe_tot | EER | | | 100% | 259 | 85 | 3,04 | 278 | 78 | 3,57 | 294 | 72 | 4,09 | 317 | 62 | 5,10 | | | 75% | 194 | 51 | 3,84 | 209 | 48 | 4,37 | 221 | 44 | 4,99 | 238 | 43 | 5,48 | | 90.4 | 50% | 129 | 33 | 3,94 | 139 | 31 | 4,48 | 147 | 29 | 5,02 | 159 | 29 | 5,58 | | | 25% | 65 | 16 | 3,97 | 70 | 16 | 4,49 | 74 | 15 | 5,00 | 79 | 14 | 5,51 | | | Minimum | 64 | 16 | 3,96 | 67 | 15 | 4,50 | 70 | 14 | | 73 | 13 | | | | 100% | 280 | 92 | 3,04 | 300 | 84 | 3,56 | 317 | 78 | 4,09 | 342 | 67 | 5,10 | | | 75% | 210 | 55 | 3,85 | 225 | 52 | 4,37 | 238 | 48 | 4,99 | 257 | 47 | 5,49 | | 100.4 | 50% | 140 | 35 | 3,99 | 150 | 33 | 4,52 | 159 | 31 | 5,08 | 171 | 31 | 5,61 | | | 25% | 70 | 18 | 4,00 | 75 | 17 | 4,52 | 79 | 16 | 5,05 | 86 | 15 | 5,56 | | | Minimum | 69 | 17 | 3,99 | 73 | 16 | 4,52 | 76 | 15 | | 79 | 14 | | | | 100% | 307 | 102 | 3,01 | 328 | 93 | 3,52 | 348 | 86 | 4,05 | 375 | 74 | 5,05 | | | 75% | 230 | 60 | 3,83 | 246 | 57 | 4,34 | 261 | 53 | 4,97 | 281 | 52 | 5,46 | | 110.4 | 50% | 154 | 38 | 4,01 | 164 | 36 | 4,52 | 174 | 34 | 5,09 | 188 | 33 | 5,65 | | | 25% | 77 | 19 | 4,00 | 82 | 18 | 4,52 | 87 | 17 | 5,09 | 94 | 17 | 5,62 | | | Minimum | 76 | 19 | 4,00 | 79 | 18 | 4,52 | 83 | 16 | | 86 | 15 | | | | 100% | 341 | 115 | 2,97 | 361 | 105 | 3,44 | 383 | 97 | 3,96 | 410 | 85 | 4,82 | | | 75% | 256 | 69 | 3,72 | 271 | 67 | 4,08 | 287 | 63 | 4,59 | 307 | 60 | 5,13 | | 120.4 | 50% | 170 | 42 | 4,07 | 181 | 40 | 4,50 | 192 | 38 | 5,07 | 205 | 36 | 5,65 | | | 25% | - | - | - | - | - | - | - | - | - | - | - | - | | | Minimum | 105 | 26 | 4,08 | 106 | 24 | 4,49 | 110 | 22 | | 114 | 20 | | | | 100% | 393 | 130 | 3,02 | 420 | 119 | 3,53 | 445 | 110 | 4,05 | 480 | 95 | 5,05 | | | 75% | 295 | 77 | 3,85 | 315 | 73 | 4,33 | 333 | 68 | 4,93 | 360 | 66 | 5,44 | | 140.4 | 50% | 196 | 49 | 3,98 | 210 | 47 | 4,50 | 222 | 44 | 5,03 | 240 | 43 | 5,58 | | | 25% | 98 | 25 | 3,99 | 105 | 23 | 4,51 | 111 | 22 | 5,02 | 120 | 22 | 5,56 | | | Minimum | 97 | 24 | 4,00 | 102 | 23 | 4,50 | 106 | 21 | , | 110 | 20 | , | | | 100% | 438 | 146 | 3,00 | 470 | 134 | 3,51 | 496 | 124 | 4,00 | 530 | 109 | 4,86 | | | 75% | 329 | 90 | 3,66 | 352 | 85 | 4,13 | 372 | 81 | 4,62 | 397 | 77 | 5,14 | | 160.4 | 50% | 219 | 54 | 4,03 | 235 | 52 | 4,55 | 248 | 49 | 5,06 | 265 | 47 | 5,64 | | | 25% | - | - | - | - | - | - | - | - | - | - | - | - | | | Minimum | 132 | 33 | 4,04 | 138 | 30 | 4,54 | 143 | 28 | | 147 | 26 | | | | 100% | 491 | 169 | 2,91 | 529 | 155 | 3,41 | 563 | 142 | 3,96 | 607 | 122 | 4,98 | | | 75% | 368 | 99 | 3,71 | 396 | 94 | 4,23 | 422 | 86 | 4,91 | 456 | 84 | 5,41 | | 180.4 | 50% | 245 | 63 | 3,90 | 264 | 59 | 4,46 | 281 | 55 | 5,07 | 304 | 54 | 5,65 | | | 25% | 123 | 31 | 3,93 | 132 | 30 | 4,47 | 141 | 28 | 5,09 | 152 | 27 | 5,63 | | | Minimum | 121 | 31 | 3,91 | 128 | 29 | 4,48 | 134 | 26 | | 139 | 25 | , | | | 100% | 549 | 182 | 3,02 | 572 | 172 | 3,33 | 610 | 159 | 3,84 | 658 | 137 | 4,80 | | | 75% | 412 | 108 | 3,81 | 429 | 105 | 4,09 | 457 | 97 | 4,71 | 493 | 95 | 5,18 | | 200.4 | 50% | 274 | 69 | 3,97 | 286 | 67 | 4,28 | 305 | 63 | 4,83 | 329 | 61 | 5,36 | | | 25% | 137 | 35 | 3,97 | 143 | 33 | 4,28 | 152 | 32 | 4,81 | 164 | 31 | 5,31 | | | Minimum | 135 | 34 | 3,98 | 138 | 32 | 4,28 | 145 | 30 | ,=- | 151 | 28 | - / | | | 100% | 599 | 203 | 2,95 | 642 | 186 | 3,45 | 677 | 171 | 3,96 | 731 | 147 | 4,97 | | | 75% | 449 | 119 | 3,77 | 482 | 112 | 4,30 | 508 | 104 | 4,88 | 548 | 102 | 5,37 | | 220.4 | 50% | 299 | 75 | 3,97 | 321 | 71 | 4,51 | 339 | 67 | 5,07 | 365 | 65 | 5,62 | | | 25% | - | - | - | - | - | - | - | - | - | - | - | - | | | Minimum | 177 | 45 | 3,97 | 186 | 41 | 4,52 | 194 | 38 | | 201 | 36 | | | | 100% | 642 | 221 | 2,90 | 695 | 203 | 3,42 | 736 | 186 | 3,96 | 787 | 164 | 4,80 | | | 75% | 481 | 136 | 3,54 | 521 | 128 | 4,07 | 552 | 120 | 4,60 | 590 | 115 | 5,13 | | 240.4 | 50% | 321 | 82 | 3,94 | 347 | 77 | 4,51 | 368 | 72 | 5,10 | 393 | 69 | 5,69 | | 11017 | 25% | - | - | - | - | - | - | - | - | - | - | - | - | | | Minimum | 193 | 49 | 3,94 | 204 | 45 | 4,52 | 212 | 42 | | 219 | 38 | | | | MIIIIIIIIII | כלו | 47 | 3,74 | 204 | 40 | 4,32 | 212 | 42 | | 219 | 30 | | $kWf = Cooling\ capacity\ in\ kW$ $kWe_tot = Unit\ total\ power\ input\ in\ kW$ Load = % of cooling capacity compared to the value at full load Internal exchanger water = output temperature 7° C/ input * (variable) / constant flow equal to the nominal value. ## **PREMIUM VERSION** # **Acoustic configuration: super-silenced (EN)** ## **Cooling performance at part load** | | | | | | | Entering ex | ternal exchar | nger air temp | erature (°C) | | | | | |-------|---------|-----|---------|------|-----|-------------|---------------|---------------|--------------|------|-----|---------|------| | Size | Load | | 35°C | | | 30°C | | | 25°C | | | 20°C | | | | | kWf | kWe_tot | EER | | | 100% | 322 | 121 | 2,66 | 347 | 111 | 3,13 | 371 | 102 | 3,64 | 414 | 86 | 4,81 | | | 75% | 241 | 66 | 3,67 | 260 | 62 | 4,21 | 279 | 58 | 4,79 | 311 | 59 | 5,24 | | 120.4 | 50% | 161 | 40 | 4,01 | 174 | 38 | 4,63 | 186 | 35 | 5,25 | 207 | 35 | 5,86 | | | 25% | - | - | - | - | - | - | - | - | - | - | - | - | | | Minimum | 103 | 26 | 4,02 | 109 | 24 | 4,62 | 114 | 22 | 5,24 | 118 | 20 | 5,86 | | | 100% | 365 | 137 | 2,66 | 392 | 126 | 3,11 | 419 | 117 | 3,58 | 461 | 102 | 4,52 | | | 75% | 274 | 71 | 3,87 | 294 | 66 | 4,46 | 314 | 63 | 4,97 | 346 | 64 | 5,41 | | 140.4 | 50% | 182 | 45 | 4,04 | 196 | 43 | 4,60 | 210 | 41 | 5,10 | 230 | 41 | 5,60 | | | 25% | - | - | - | - | - | - | - | - | - | - | - | - | | | Minimum | 99 | 24 | 4,05 | 105 | 23 | 4,61 | 109 | 21 | 5,09 | 113 | 20 | 5,61 | | | 100% | 405 | 153 | 2,65 | 429 | 141 | 3,04 | 459 | 131 | 3,50 | 512 | 110 | 4,65 | | | 75% | 304 | 83 | 3,68 | 322 | 78 | 4,13 | 344 | 74 | 4,67 | 384 | 75 | 5,11 | | 160.4 | 50% | 202 | 50 | 4,04 | 215 | 47 | 4,57 | 229 | 44 | 5,16 | 256 | 44 | 5,79 | | | 25% | - | - | - | - | - | - | - | - | - | - | - | - | | | Minimum | 129 | 32 | 4,05 | 134 | 29 | 4,57 | 141 | 27 | 5,17 | 146 | 25 | 5,79 | | | 100% | 471 | 175 | 2,69 | 510 | 160 | 3,19 | 545 | 147 | 3,71 | 599 | 128 | 4,68 | | | 75% | 353 | 91 | 3,88 | 382 | 84 | 4,55 | 409 | 80 | 5,11 | 450 | 81 | 5,56 | | 180.4 | 50% | 236 | 58 | 4,07 | 255 | 55 | 4,68 | 273 | 52 | 5,21 | 300 | 52 | 5,73 | | | 25% | - | - | - | - | - | - | - | - | - | - | - | - | | | Minimum | 128 | 31 | 4,06 | 136 | 29 | 4,68 | 142 | 27 | 5,20 | 147 | 26 | 5,72 | | | 100% | 504 | 194 | 2,60 | 538 | 179 | 3,01 | 577 | 165 | 3,50 | 635 | 144 | 4,41 | | | 75% | 378 | 100 | 3,78 | 403 | 93 | 4,34 | 433 | 89 | 4,88 | 476 | 90 | 5,29 | | 200.4 | 50% | 252 | 63 | 3,98 | 269 | 60 | 4,51 | 289 | 58 | 5,02 | 317 | 58 | 5,51 | | | 25% | - | - | - | - | - | - | - | - | - | - | - | - | | | Minimum | 137 | 34 | 3,98 | 144 | 32 | 4,50 | 150 | 30 | 5,01 | 156 | 28 | 5,52 | | | 100% | 573 | 213 | 2,69 | 615 | 196 | 3,14 | 658 | 181 | 3,64 | 723 | 157 | 4,61 | | | 75% | 430 | 111 | 3,87 | 461 | 103 | 4,48 | 493 | 98 | 5,01 | 542 | 100 | 5,44 | | 220.4 | 50% | 287 | 71 | 4,04 | 307 | 67 | 4,58 | 329 | 65 | 5,10 | 362 | 64 | 5,62 | | | 25% | 143 | 37 | 3,88 | 154 | 35 | 4,41 | 164 | 34 | 4,87 | 181 | 34 | 5,39 | | | Minimum | 124 | 32 | 3,84 | 132 | 30 | 4,35 | 137 | 28 | 4,80 | 142 | 27 | 5,25 | | | 100% | 614 | 233 | 2,64 | 660 | 214 | 3,08 | 700 | 197 | 3,55 | 780 | 165 | 4,73 | | | 75% | 460 | 126 | 3,65 | 495 | 119 | 4,16 | 525 | 112 | 4,69 | 585 | 114 | 5,13 | | 240.4 | 50% | 307 | 77 | 4,01 | 330 | 72 | 4,60 | 350 | 68 | 5,19 | 390 | 67 | 5,79 | | | 25% | - | - | - | - | - | - | - | - | - | - | - | - | | | Minimum | 196 | 49 | 4,01 | 206 | 45 | 4,60 | 215 | 41 | 5,18 | 223 | 38 | 5,80 | kWf = Cooling capacity in kW kWe_tot = Unit total power input in kW Load = % of cooling capacity compared to the value at full load lnternal exchanger water = output temperature 7° C/ input * (variable) / constant flow equal to the nominal value. # **Configurations** Consult the "Option compatibility" section. ## **B** - Low water temperature (Brine) Configuration also known as "Brine". Enables an "unfreezable" solution to be cooled (for example, water and ethylene glycol in suitable quantities) up to a temperature of between +4°C and -8°C. It includes: - suitable exchangers with extra-thick closed-cell insulation - electronic expansion valve, functional calibration and safety devices suitable for particular uses. During the selection phase it is necessary to indicate the required operating type, the unit will be optimised on the basis of this: - Unit with single operating set-point (only at low temperature) - Unit with double
operating set-point The unit in this configuration has a different operation range, indicated in the operating range section. In low temperature operation, some staging steps could not be available. The glycol concentration must be chosen based on the minimum temperature the water can reach. The presence of glycol influences pressure drops on the water side and the unit's output as indicated in the table reporting the "correction factors for use with glycol". The "Extremely low water temperature" option for the chilled water production down to -12°C is available on request. ## **D** - Partial energy recovery A configuration which enables the production of hot water free-of-charge while operating in the cooling mode, thanks to the partial recovery of condensation heat that would otherwise be disposed of into the external heat source. This option is also known as "desuperheater". It is made up of a lnox 316 stainless steel brazed plate heat exchangers, suitable for recovering a part of the capacity dispersed by the unit (the dispersed heating capacity is equal to the sum of the cooling capacity and the electrical input capacity of the compressors). The partial recovery device is considered to be operating when it is powered by the water flow which is to be heated. This condition improves the unit performance, since it reduces the condensation temperature: in nominal conditions the cooling capacity increases indicatively by 3.2% and the power input of the compressors is reduced by 3.6%. When the temperature of the water to be heated is particularly low, it is opportune to insert a flow regulation valve in the hydraulic circuit, to maintain the recovery output temperature at higher than 35°C and thus avoid refrigerant condensation in the partial energy recovery device. - D Partial recovery device - 1 Internal exchanger - 2 Compressors - 3 Recovery exchanger - 4 External exchanger 5 - Expansion electronic valve - TW out chilled water outlet - RW in Recovery water input RW out - Recovery water output - T Temperature probe PD Differential pressure switch AE Outdoor air The power delivered by the partial recovery is 20% of the thermal power dissipation (cooling + electrical power absorbed by the compressors) ## Pressure drops of partial energy recovery exchanger Q = water flow-rate[I/s] DP = water side pressure drops (kPa) ## Partial recovery heating capacity kWde/kWf = Heat recovered/Cooling capacity [%] Tde = Heat recovering device outlet water temperature [°C] Example: Requested cooling capacity: 500 kW with chilled water at 12/7°C and 35°C outdoor air. Size purpose of the study: WSAT-XSC3 EXC SC 180.4 Hot water required temperature: $+45^{\circ}$ C Recovery capacity: 25% di 500 kW = 125 kW Design flow-rate: 6,0 l/s Recovery pressure drop: 20 kPa Data represented refer to outdoor air T conditions = 35°C ## R - Total energy recovery A configuration which enables the production of hot water free-of-charge while operating in the cooling mode, thanks to the total recovery of condensation heat that would otherwise be disposed of into the external heat source. This solution increases the overall efficiency of the system in all cases where a high-level of hot water production is required. It is made up of a brazed plate heat exchanger made of 316 stainless steel, suitable for recovering all the unit heat capacity (equal to the sum of the cooling capacity and the electrical input capacity of the compressors), from the on-off type solenoid valve, from the supply and return temperature sensors in the hot water circuit and the related two-step integrated control logic. Hot water availability is always subordinate to the production of chilled water. See the following example: - 1. cooling capacity request = 100% / Heating capacity request = 0% > Production only of cooling capacity; - 2. cooling capacity request = 100% / Heating capacity request = 0% > Production of cooling and heating capacity by recovery; - 3. cooling capacity request = 50% / Heating capacity request = 100% > Production of cooling and heating capacity by recovery, equal to the 50% of the requested heating capacity. To prevent constant switching in the unit's refrigeration circuit, it is necessary to install a storage tank with an adequate capacity in the system's hot water circuit. In the absence of hot water circulation in the recovery exchanger, the maximum inlet air temperature is reduced by approximately 2°C compared with the unit without "Total Energy Recovery" mode. #### TOTAL OPERATING ENERGY RECOVERY When hot water is requested, the condensing coil is deactivated. Condensation takes place wholly within the recovery circuit. #### TOTAL NON-OPERATING ENERGY RECOVERY When the recovery set-point has been satisfied, the condensing coil is reactivated. In this condition, the total recovery circuit operates as a Partial recovery circuit (Desuperheater). - R Total recovery device - 1 Internal exchanger - 2 Compressors - 3 Recovery exchanger - 4 Total recovery enabling valve - 5 External exchanger enabling valve - 6 External exchanger - 7 Expansion electronic valve - T Temperature probe - PD Differential pressure switch TW in - Chilled water inlet TW out - Chilled water outlet RW in - Recovery water input RW out - Recovery water output AE Outdoor air #### Pressure drops of the total energy recovery exchanger Q = water flow-rate[I/s] DP = water side pressure drops (kPa) J. Mater state pressure arops (in t ## Efficient use of energy with heat recovery In almost all systems fitted with a chiller used to produce chilled water there is also the need to have hot water. The recovery of condensation heat is an efficient way of producing hot water while the chiller is in operation. It has the double benefit of both reducing the heat load to the condenser, thereby eliminating dissipation costs and generating free hot water, thereby reducing the costs of the auxiliary heater. ## **Application versatility of recovery devices** The hot water produced by heat recovery can be used in a number of ways: to reheat air in handling units, to preheat hot water for domestic use or industrial processes, to heat up water in swimming pools, showers and spas, to preheat hot water for laundries or industrial kitchens. Post-heating in air handling units to control humidity levels in hospitals and labs Preheating of hot water for domestic use or for industrial process Heating of water in swimming pools, showers and Preheating of hot water for laundries and industrial kitchens ## Air heating The heat recovery device can be used to cover the entire heat load required. The hot water supply temperature is controlled via a modulating control valve that needs to be fitted on the system at the outlet of the recovery unit. The auxiliary heating device is recommended to cover the thermal energy demand when the chiller is not in operation or is operating at part load. Example of how heat recovery is used to cover the entire heat demand and control the operating temperature ### **Water preheating** The heat recovery device can be used to preheat water at the inlet of the main heating device (e.g. boiler). In this case, the demand for hot water is greater than the amount of heat recovered by condensation and the recovery device only covers part of the required heat load. By preheating the water, heating consumption levels are therefore reduced and the main heating device has a lower installed power requirement. Example of how heat recovery is used to preheat hot water in the system #### **Domestic hot water production** The heat recovery device can be used to produce water for domestic use. In order to prevent contamination of domestic water with the chiller's process fluid, it is necessary to insert an intermediate heat exchanger. Using an inertial heat storage tank allows to have a reserve of preheated water and enables the intermediate exchanger to operate more efficiently. Example of how heat recovery is used to preheat hot water for domestic use - A Unit supply limit - 1 Recovery exchanger - 3 Auxiliary heating device (ex.boiler) - 5 Intermediate heat exchanger - RW in Recovery water input - T in Drinkable water inlet - D Partial energy recovery - 2 Control modulating valve - 4 Electric pump with standby pump - 6 Inertial heat storage RW out - Recovery water output Tout - Drinkable water outlet to the auxiliary heater The diagrams refer to partial energy recovery, though they also apply to total energy recovery (Clivet R). Please note that the diagrams are only meant as a guide. ## **HydroPack** ## 2PM/3PM - Hydronic assembly user side with 2/3 ON/OFF pumps Option supplied on the unit. Pumping unit consisting of two or three parallel electric pumps with a self-adaptive modular activation logic. It enables the automatic reduction of the liquid flow rate in critical conditions, avoiding blocks due to overloading and consequential intervention work by specialised technical personnel. Centrifugal electric pump with impeller made with AISI 304 steel and AISI 304 stainless steel body or grey cast iron (depending on models). Mechanical seal using ceramic, carbon and EPDM elastomer components. Three-phase electric motor with IP44-protection. Complete with thermoformed insulated casing, quick connections with insulated casing, non return valve, safety valve, pressure gauges, system load safety pressure switch, stainless steel antifreeze immersion heaters located at the return and supply point. The various models which are available can be differentiated by the system available pressure. The 2PM / 3PM option is supplied with a kit made up of 2 quick blind connections, for the removal of one pump in case of maintenance. Check the option compatibility table for combinations with storage tank Provided with hydraulic interceptions to the outside of the unit (option 'CSVX - A pair of manually operated shut-off valves') to facilitate any major maintenance operations #### HYDROPACK #### HYDROPACK WITH STORAGE
TANK ### Illustrative diagram referred to unit size 240.4 with Hydropack with no. 3 of pumps - 1 Internal exchanger - 2 Cutoff valve - 3 Purge valve - 4 Storage tank with antifreeze heater - 5 Draw off cock - 6 Cutoff valve with quick joints - 7 Steel mesh strainer water side - 8 Manometer - 9 Safety valve (6 Bar) - 10 Packaged electric pump with high efficiency impeller - 11 Non return valve - 12 System safety pressure switch (prevents the pumps from operating if no water is present) - 13 Antifreeze heater - T Temperature probe - PD Differential pressure switch TW in chilled water inlet TW out chilled water outlet IFWX = Steel mesh strainer water side CSVX - Couple of manual shut-off valves The grey area indicates further optional components. ## 2PM/3PM option performances (HydroPack) ## Head Q[l/s]= water flow rate Δ [kPa] = pump head PU2*=2-pole pump Caution: to obtain the available pressure values, you need to subtract the following from the head values represented in these diagrams: - User side exchanger pressure drops - IFVX accessory –Steel mesh filter on the water side (where applicable) ## **Hydropack electrical data** | PUMP | Rated power [kW] | Nominal power [A] | PUMP | Rated power [kW] | Nominal power [A] | |--------|------------------|-------------------|--------|------------------|-------------------| | 2×PU20 | 2×1.8 | 2×3.4 | 2×PU27 | 2×5.5 | 2×10.4 | | 2×PU21 | 2×2.9 | 2×4.8 | 3×PU20 | 3×1.8 | 3×3.4 | | 2×PU22 | 2×3.3 | 2×5.6 | 3×PU21 | 3×2.9 | 3×4.8 | | 2×PU26 | 2×5.5 | 2×10.4 | 3×PU22 | 3×3.3 | 3×5.6 | ## 2PMV/3PMV - Hydronic assembly user side with 2/3 inverter pumps Option supplied on the unit. Pumping unit consisting of parallel electric pumps and controlled by inverter to adapt to the different application conditions. It enables the automatic reduction of the liquid flow rate in critical conditions, avoiding blocks due to overloading and consequential intervention work by specialised technical personnel. Through the inverter calibration, standard supplied, it is possible to adapt the pump flow-rate/head to the installation feature. Centrifugal electric pump with impeller made with AISI 304 steel and AISI 304 stainless steel body or grey cast iron (depending on models). Mechanical seal using ceramic, carbon and EPDM elastomer components. Three-phase electric motor with IP44-protection. Complete with thermoformed insulated casing, quick connections with insulated casing, non return valve, safety valve, pressure gauges, system load safety pressure switch, stainless steel antifreeze immersion heaters located at the return and supply point. In combination with the "IVFDT" - Variable flow-rate control option, it allows the water flow rate variation to the installation in part load operation to obtain the maximum unit efficiency and lower pumping unit consumption. The 2PMV / 3PMV option is supplied with a kit made up of 2 quick blind connections, for the removal of one pump in case of maintenance. Check the option compatibility table for combinations with storage tank. Provided with hydraulic interceptions to the outside of the unit (option 'CSVX - A pair of manually operated shut-off valves') to facilitate any major maintenance operations - 1 Internal exchanger - 2 Cutoff valve - 3 Purge valve - 4- Storage tank - 5 Draw off cock - 6 Cutoff valve with quick joints - 7 Steel mesh strainer water side - 8 Manometer - 9 Safety valve (6 Bar) - 10 Packaged electric pump with high efficiency impeller activated by inverter - 11 Non return valve - 12 System safety pressure switch (prevents the pumps from operating if no water is present) - 13 Antifreeze heater - T Temperature probe PD - Differential pressure switch TW in chilled water inlet TW out chilled water outlet IFWX = Steel mesh strainer water side CSVX - Couple of manual shut-off valves The grey area indicates further optional components. 45 ## **2PMV option performances** ## Head Q[I/s]= water flow rate Δ [kPa] = pump head Caution: to obtain the available pressure values, you need to subtract the following from the head values represented in these diagrams: - internal exchanger pressure drops - IFVX accessory –Steel mesh filter on the water side (where applicable) ## **Power input** Q[I/s]= water flow rate kW = power input ## **3PMV option performances** ## Head Q[l/s]= water flow rate Δ [kPa] = pump head Caution: to obtain the available pressure values, you need to subtract the following from the head values represented in these diagrams: - internal exchanger pressure drops - IFVX accessory –Steel mesh filter on the water side (where applicable) ## **Power input** Q[l/s]= water flow rate kW = power input # **Accessories - Hydronic assembly** ## A550/A700/A900 - 550 / 700 / 900 l. storage tank Option supplied built-in the unit. Steel storage tank complete with double layer covering with closed-cell insulation, stainless steel anti-freeze immersion resistance, bleed valve, draw off cock, quick connections with insulated casing. The various available models can be differentiated by capacity. Provided with hydraulic interceptions to the outside of the unit (option 'CSVX - A pair of manually operated shut-off valves') to facilitate any major maintenance - 1 Internal exchanger - 2 Cutoff valve - 3 Purge valve - 4 Storage tank with antifreeze heater 5 Draw off cock - 6 Cutoff valve with quick joints - 7 Steel mesh strainer water side - 13 Antifreeze heater - T Temperature probe PD Differential pressure switch - TW in chilled water inlet TW out chilled water outlet - IFWX = Steel mesh strainer water side - CSVX Couple of manual shut-off valves The grey area indicates further optional components. ## A550PPS/A700PPS/A900PPS - 550/700/900 I. storage tank with primary circuit built-in Option supplied built-in. Simplifies system design and manufacture. This accessory includes the components provided for the A550 / A700 / A900 options, as well as: - primary circuit, already set up and tested inside the unit; - cast-iron butterfly shut-off valve, with quick connections and activating handle and mechanical calibration lock on the pump supply. - 2PM HYDROPACK with no. 2 of pumps or 3PM HYDROPACK with no. 3 of pumps according to the size Attention: option not compatible with DST control logic (Dynamic Supply Temperature) activable by the User. - 1 Internal exchanger - Cutoff valve - 3 Purge valve - Storage tank with antifreeze heater - Draw off cock - Cutoff valve with quick joints - Steel mesh strainer water side - Manometer - 9 Safety valve (6 Bar) - 10 Packaged electric pump with high efficiency impeller - 11 Non return valve - 12 System safety pressure switch (prevents the pumps from operating if no water is present) - 13 Antifreeze heater - T Temperature probe PD Differential pressure switch TW in chilled water inlet TW out chilled water outlet IFWX = Steel mesh strainer water side CSVX - Couple of manual shut-off valves The grey area indicates further optional components. #### **Built-in pump electrical data** | Si | ze | 90.4 | 100.4 | 110.4 | 120.4 | 140.4 | 160.4 | 180.4 | 200.4 | 220.4 | 240.4 | |-----|------|----------|----------|----------|----------|------------|----------|----------|----------|----------|----------| | | | | | | EXCELLEN | CE SC / EN | | | | | | | | | 2 x PU20 | 2 x PU21 | 3 x PU20 | 3 x PU20 | 3 x PU21 | | FLI | [kW] | 3,6 | 3,6 | 3,6 | 3,6 | 3,6 | 3,6 | 5,8 | 5,4 | 5,4 | 8,7 | | FLA | [A] | 6,8 | 6,8 | 6,8 | 6,8 | 6,8 | 6,8 | 9,6 | 10,2 | 10,2 | 14,4 | | | | | | | EXCELL | ENCE EN | | | | | | | | | 2 x PU20 | 2 x PU21 | 3 x PU20 | 3 x PU20 | 3 x PU20 | | FLI | [kW] | 3,6 | 3,6 | 3,6 | 3,6 | 3,6 | 3,6 | 5,8 | 5,4 | 5,4 | 5,4 | | FLA | [A] | 6,8 | 6,8 | 6,8 | 6,8 | 6,8 | 6,8 | 9,6 | 10,2 | 10,2 | 10,2 | | | | | | | PREM | IUM SC | | | | | | | | | 2 x PU20 | 2 x PU21 | 3 x PU20 | 3 x PU20 | 3 x PU20 | | FLI | [kW] | - | - | - | 3,6 | 3,6 | 3,6 | 5,8 | 5,4 | 5,4 | 5,4 | | FLA | [A] | - | - | - | 6,8 | 6,8 | 6,8 | 9,6 | 10,2 | 10,2 | 10,2 | | | | | | | PREMI | UM EN | | | | | | | | | 2 x PU20 | 2 x PU21 | 2 x PU21 | 3 x PU20 | 3 x PU20 | | FLI | [kW] | - | - | - | 3,6 | 3,6 | 3,6 | 5,8 | 5,8 | 5,4 | 5,4 | | FLA | [A] | - | - | - | 6,8 | 6,8 | 6,8 | 9,6 | 9,6 | 10,2 | 10,2 | ## IFWX - Steel mesh strainer water side The device stops the exchanger from being clogged by any impurities which are in the hydraulic circuit. The mechanical steel mesh strainer must be placed on the water input line. It can be easily dismantled for periodical maintenance and cleaning. It also includes: - cast-iron shut-off butterfly valve with quick connections and activation lever with a mechanical calibration lock; - quick connections with insulated casing. #### STEEL MESH FILTER PRESSURE DROP ## STEEL MESH FILTER FEATURES | | EXCELLENCE | | |----------------------|---------------|----| | Diameter | 4" | 5" | | Degree of filtration | 1,6 | mm | | | | | | | PREMIUM | | | Diameter | PREMIUM
4" | 5" | $\label{eq:Q} Q = \text{water flow rate (I/s)} \qquad \quad DP = \text{water side pressure drop (kPa)}$ Pressure drop referred to a clean filter Ilnstallation is the responsibility of the Client, externally to the unit $Check for the presence of the required \ hydraulic \ shut-off \ valves \ in \ the \ system, in \ order \ to \ undertake \ periodical \ maintenance$ ## Separately supplied accessory ## **Accessories** ## **PGFC-Finned coil protection grilles** Grilles made in drawn of electro-welded steel and coated to protect the external coil from accidental contact with people and things. Ideal for installation in places where persons can pass from, such as car parks, terraces, etc. Accessories supplied and installed on the machine. ## **PGCCH - Anti-hail protection grilles** Grilles made in drawn of electro-welded steel and coated suitable to protect the external coil from hail damage. Accessories supplied and installed on the machine. ## CCCA - Copper / aluminium condensing coil with acrylic lining Condensing coils with copper pipes and
aluminum fins with acrylic lacquering. Can be used in settings with moderately aggressive low saline concentrations and other chemical agents. The acrylic coating is used as the most economical and effective method particularly in protecting aluminum surfaces exposed to the corrosive influence of the humid and salty air in regions with marine climates. #### Attention - Cooling capacity variation -2.7% - Variation in compressor power input +4.2% - Operating range reduction -2.1°C ## **CCCA1 - Copper / aluminium condensing coils with Aluminium Energy Guard DCC treatment** Condensing coils with copper pipes and aluminum fins with Aluminium Energy Guard DCC treatment. Complete treatment which offers an optimal thermal exchange and guarantees and protects the finned coil exchangers from corrosion over time and UV rays. Can be used in settings with very aggressive saline concentrations and other chemical agents in the air thus maintaining the performance of the coils over time and with negligible pressure drop. ## **CCCC - Copper / copper condensing coil** Condensing coils with copper pipes, copper fins and brass structure. Can be used in settings with moderately aggressive saline concentrations and other chemical agents. This option is not suitable for application in sulphuric environments Option available on request ## MHP - High and low pressure gauges It includes two liquid pressure gauges for the analog measurement of refrigerant pressures on suction and discharge lines of the compressors with pressure sockets installed in the unit in an easily accessible location. ## SDV - Cutoff valve on compressor supply and return An option which integrates the supply cutoff valve, which is supplied as standard. The presence of the cock at the intake as well enables the compressors to be isolated and substituted without discharging the refrigerant from within the refrigeration circuit. This means that the extraordinary maintenance activities are facilitated. Device installed built-in the unit. - 1. Compressors - 2. Cutoff valve - Safety valve - 4. SDV option ## RE-20 / RE-25 / RE-30 / RE-35 / RE-39 - Electrical panel anti-freeze protection It includes self-regulating electric heaters with thermost which are able to protect the electrical panel against condensation and frost guaranteeing its correctly functions down to -39°C. This accessory operates even when the unit is switched off provided that the power supply is maintained active and the unit continues to be electrically connected. Device installed and wired built-in the unit. This accessory operates even when the unit is switched off provided that the power supply is maintained active and the unit continues to be connected. This accessory does not lead to substantial variations in the electrical data for the unit which has been declared in the Electrical Data section. ## MF2 - Multifunction phase monitor (PREMIUM version only) The phase monitor controls the electrical parameters of the power line to the unit. It works on the command circuit and orders the unit to be switched off when one of the following cases is present: when the phase connections do not respect the correct sequence, or when there is over voltage or under voltage for a certain amount of time: limit values of over and under voltage and the time interval can be manually and separately set. When the line conditions are re-established, the unit is re-armed automatically. Device installed and wired built-in the unit. This accessory is available only in the PREMIUM version. Supplied as standard in the EXCELLENCE version The device prevents sudden changes of voltage; however, the voltage must always be in a range between 380V and 480V. ### PFCP - Power-factor correction capacitors (cosfi > 0.9) The component is necessary to lower the phase difference between current and voltage in the electromagnetic components of the unit (e.g. asynchronous motors). The component allows to put the cosfi power factor to values on average higher than 0.9, reducing the network reactive power. This often leads to an economic benefit which the energy provider grants to the final user. The device is installed and wired built-in the unit. ## ECS - ECOSHARE function for the automatic management of a group of units Device allows automatic management of units that operate on the same hydraulic circuit, by creating a local communication network. There are three control modes that can be set via a parameter during the units stat-up. Two control modes distribute the heat load on the available units by following the distribution logic to benefit of efficiency levels at part load and one shift the supply water set-point temperature on the group of units. #### Moreover: Mode 0 - shift the supply water set-point temperature and keeps all the pumps active; Mode 1 - distribute the heat load and keeps all the pumps active; Mode 2 - distribute the heat load and activates only the pumps of the unit required to operate. The device allows for rotation based on the criterion of minimum wear and management of units in stand-by. In case of failure of one unit the load is distributed in the other units. The units can be of various sizes but of the same type: all reversible heat pumps, or all air-cooled liquid chiller. The set of units is controlled by a Master unit. The local network can be extended up to 7 units (1 Master and 6 Slave). The unit supplied with this device can also be equipped at the same time with the RCMRX option and one of the CMSC8 / CMSC9 / CMSC10 options. ### SFSTR – Disposal for inrush current reduction (SOFT STARTER) This option is also called 'Soft starter'. Electronic device that automatically and gradually starts the compressors, thereby reducing the current peak generated at the start-up and therefore reduces the mechanical stress on the motor and the electrodynamic stress on the power cables and on the mains. The device is installed and wired built-in the unit. In sizes 180.4, 200.4, 220.4 and 240.4 the larger size compressor is standard equipped with device for progressive start-up. For these units the soft-starter benefits are guaranteed on lower size compressors, maintaining unchanged the M.I.C. (max. inrush current) of the standard unit. -- Absorbed current without SFSTR option Absorbed current without SFSTR option The compressors with 60 HP of nominal capacity need the standard device for the progressive start-up. ## CMSC11 - Serial communication module for BACnet supervisor Module allows the serial connection of the supervision system, using BACnet/IP as the communication protocol. It enables access to the complete list of operational variables, commands and alarms. Using this accessory every unit can dialogue with the main supervision systems. Device installed and wired built-in the unit. The configuration and management activities for the BACnet networks are the responsibility of the client. The total length of each serial line do not exceed 1000 meters and the line must be connected in bus typology (in/out) ## **CMSC9 - Serial communication module for Modbus supervisor** Module allows the serial connection of the supervision system, using Modbus as the communication protocol. It enables access to the complete list of operational variables, commands and alarms. Using this accessory every unit can dialogue with the main supervision systems. Device installed and wired built-in the unit The total length of each serial line do not exceed 1000 meters and the line must be connected in bus typology (in/out) ## CMSC10 - Serial communication module for LonWorks supervisor Module allows the serial connection of the supervision system which uses the LonWorks communication protocol. It enables access to a list of operating variables, commands and alarms which comply with the Echelon® standard. Device installed and wired built-in the unit. The configuration and management activities for the LonWorks networks are the responsibility of the client. $LonWorks\ technology\ uses\ the\ LonTalk^{@}\ protocol\ for\ communicating\ between\ the\ network\ nodes.\ Contact\ the\ service\ supplier\ for\ further\ information.$ The total length of each serial line do not exceed 1000 meters and the line must be connected in bus typology (in/out) ### CREFB - Device for fan consumption reduction of the external section, ECOBREEZE type An option which regards the external helical fans, as an alternative to the phase-cut device which is supplied as standard in SC and EN version. It provides for an IP54 brushless electronically commutated electrical motor and incorporated thermal protection. Supplied with variable speed control. #### **REGBT - Device for the condensing coil partialization** Electronic device supplied on the unit allows to extend the unit operating range in cooling down to an outdoor air temperature of -18°C. For good operation of the unit at low outdoor temperatures, the fan motors speed is continuously adjusted as well as the finned exchange surface according to the condensing pressure. It has to be matched to CREFB option. ### **CONTA2 - Energy meter** Allows to display and record the unit's main electrical parameters. The data can be displayed on the device display or via the supervisor through the specific protocol variables.. It is possible to control: - voltage (V), - absorbed current (A), - frequency (Hz), - cosfi, - power input (KW), - absorbed energy (KWh), - harmonic components (%). The device is installed and wired built-in the unit. On the device is present a serial port with Modbus protocol for the connection to the supervision system. ## SCP4 - Set-point compensation with 0-10 V signal Device allows the changing of the preset set point by means to an external $0 \div 10 \text{ V}$ signal. The interruption of the signal the set-point is at the nominal set value. The limit values can be changed within wide values. Device installed and wired built-in the unit. ## SPC2 - Set-point compensation with outdoor air temperature
probe Device allows the automatic regulation of the preset set-point depending of the outside temperature air measured by the unit probe. This device allows to get the sliding supply water temperature, which varies depending on external conditions, enabling energy savings throughout the entire system. Device installed and wired built-in the unit. ## SPC1 - Set-point compensation with 4-20 mA signal Device allows the changing of the preset set point by means to an external 4÷20 mA signal. The interruption of the signal the set-point is at the nominal set value. Device installed and wired built-in the unit. # IVFDT - Inverter driven variable flow-rate user side control depending on the temperature differential This option allows water flow-rate modulation to the unit during partial load conditions, maintaining stable the temperature difference between inlet and outlet to the heat exchanger. Designed for systems with primary circuit variable flow-rate systems decoupled from secondary circuit. With no building load the unit switches off the compressors while concerning pumps is possible to select: - Active pumps with minimum flow-rate, monitoring secondary circuit temperature variations - Pump switching off, periodically activating them (settable time) leading secondary circuit temperatures on primary circuit - Pump switching off and waiting for the user signal for activation (free potential) Flow-rate modulation is managed by embedded logic thanks to built-in flow-rate control device and temperature probes. This device is installed and wired. This option is available only with inverter driven HYDROPACK selected (2PMV / 3PMV) ## RPRPDI - Refrigerant leak detector with pump down function in the casing Leak detector device built-in installed and placed inside the compressor box, It detects leaks of the internal refrigeration circuit and automatically enables the "pump-down" function, storing the refrigerant inside the finned coil exchanger. During pump-down, cooling capacity is not produced by the unit. At the end of the operation the unit is switched off and a dedicated alarm signal is available directly inside the electrical panel. The device respects BREEAM regulations. ## **Accessories separately supplied** ## **CSVX - Couple of manual shut-off valves** Kit composed of: - no. 2 cast-iron shut-off butterfly valves, it includes: fast fittings and activation lever with a mechanical calibration lock - no. 2 of Victaulic type quick connection with insulated casing to isolate the hydraulic circuit at the inlet and outlet Installation is the responsibility of the Client, externally to the unit. ## **RCMRX - Remote control via microprocessor remote control** This option allows to have full control over all the unit functions from a remote position. It can be easily installed on the wall and has the same aspect and functions of the user interface on the unit. All device functions can be repeated with a normal portable PC connected to the unit with an Ethernet cable and equipped with an internet navigation browser. The device must be installed on the wall with suitable plugs and connected to the unit (installation and wiring to be conducted by the Customer). Maximum remote control distance 350 m without auxiliary power supply. For distances greater than 350 m and in any case less than 700 m it is necessary to install the 'PSX - Mains power unit' accessory. Data and power supply serial connection cable n.1 twisted and shielded pair. Diameter of the individual conductor 0.8 mm. ## **PSX - Mains power supply unit** The device allows the unit and the remote control to communicate with the user interface even when the serial line is longer than 350m. It must be connected to the serial line at a distance of 350m from the unit and allows to extend the length to 700m maximum in total. The device requires an external power supply at 230V AC. Power supply at 230V AC provided by Customer ## **AMMX - Spring antivibration mounts** The spring antivibration mounts are attached in special housing on the support frame and serve to smooth the vibrations produced by the unit thus reducing the noise transmitted to the support structure. # **Option compatiblity - EXCELLENCE version** # **Acoustic configuration: compressor soundproofing (SC)** | REFERENCE | DESCRIPTION | 90.4 | 100.4 | 110.4 | 120.4 | 140.4 | 160.4 | 180.4 | 200.4 | 220.4 | 240.4 | |--------------------|---|----------|-----------|------------|----------|----------|----------|-------|-------|-------|-------| | | CONFIGURATIONS AN | D MAIN A | CCESSORI | ES | | | | | | | | | В | Water low temperature | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | D | Partial energy recovery | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | R | Total energy recovery | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | B + D | Water low temperature + Partial energy recovery | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | B+R | Water low temperature + Total energy recovery | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | A550 | 550 l. storage tank | 0 | 0 | 0 | 0 | Х | Х | Х | Х | Х | Х | | A700 | 700 l. storage tank | Х | Х | Х | Х | 0 | 0 | 0 | Х | Х | Х | | A900 | 900 l. storage tank | Х | Х | Х | Х | Х | Х | Х | 0 | 0 | 0 | | | STORAGE TANK AND PUMP WIT | TH PRIMA | RY CIRCU | IT BUILT-I | N | | | | | | | | A550PPS | 550 l. storage tank with primary circuitwith pump built-in | 0 | 0 | 0 | 0 | Х | Х | Х | Χ | Х | Х | | A700PPS | 700 l. storage tank with primary circuitwith pump built-in | Χ | Х | Х | Х | 0 | 0 | 0 | Х | Х | Х | | A900PPS | 900 l. storage tank with primary circuitwith pump built-in | Х | Х | Х | Х | Х | Х | Х | 0 | 0 | 0 | | | 2PM - HYDROPACK USE | R SIDE W | ITH 2 PU | ИPS | | | | | | | | | (PU20) | Pump 20 | 0 | 0 | 0 | 0 | 0 | Х | Х | Х | Х | Х | | (PU21) / (PU22) | Pump 21 / Pump 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Х | Х | Х | | (PU26) | Pump 26 | Χ | Х | Х | Х | Х | 0 | 0 | 0 | 0 | 0 | | + A550PPS | + 550 l. storage tank with primary circuitwith pump built-in | Χ | Х | Х | Х | Х | Х | Х | Х | Х | Х | | + A700PPS | + 700 l. storage tank with primary circuitwith pump built-in | Χ | Х | Х | Х | Х | Х | Х | Х | Х | Х | | + A900PPS | + 900 l. storage tank with primary circuitwith pump built-in | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | | + A550 | + 550 l. storage tank | 0 | 0 | 0 | 0 | Х | Х | Х | Х | Х | Х | | + A700 | + 700 l. storage tank | Χ | Х | Х | Х | 0 | 0 | 0 | Х | Х | Х | | + A900 | + 900 l. storage tank | Χ | х | Х | Х | Х | Х | Х | 0 | 0 | 0 | | | 3PM - HYDROPACK USE | R SIDE W | ITH 3 PUA | MPS | | | | | | | | | (PU20) | Pump 20 | Χ | Х | Х | Х | Х | Х | 0 | 0 | 0 | Х | | (PU21) | Pump 21 | Х | Х | Х | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | (PU22) | Pump 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | + A550PPS | + 550 l. storage tank with primary circuitwith pump built-in | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | | + A700PPS | + 700 l. storage tank with primary circuitwith pump built-in | Χ | Х | Х | Х | Х | Х | Х | Х | Х | Х | | + A900PPS | + 900 l. storage tank with primary circuitwith pump built-in | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | | + A550 | + 550 l. storage tank | 0 | 0 | 0 | 0 | Х | Х | Х | Х | Х | Х | | + A700 | + 700 l. storage tank | Χ | х | Х | Х | 0 | 0 | 0 | Х | Х | Х | | + A900 | + 900 l. storage tank | Х | Х | Х | Х | Х | Х | Х | 0 | 0 | 0 | | | 2PMV - HYDROPACK USER SIDE V | WITH NO. | 2 OF INVE | RTER PUN | IPS | | | | | | | | (PU22) | Pump 22 | 0 | 0 | 0 | 0 | Х | Х | Х | Х | Х | Х | | | 3PMV - HYDROPACK USER SIDE V | WITH NO. | 3 OF INVE | RTER PUN | IPS | ı | | | | | | | (PU22) | Pump 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | IVFDT - INVERTER DRIVEN VARIABLE FLOW-RATE USER SIDE | CONTROL | DEPENDI | NG ON TH | E TEMPER | ATURE DI | FFERENTI | AL | | | | | | Hydropack user side with no. 2 of pumps / Hydropack user side with no. 3 of pumps | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | | (2PMV) /
(3PMV) | Hydropack user side with no.2 of inverter pumps / Hydropack user side with no.3 of inverter pumps | 0" | 0* | 0* | 0* | 0* | 0* | 0* | 0* | 0* | 0* | | COSTS | OTHER ACC | | | | | | | | | | | | | Device for fan consumption reduction of the external section, ECOBREEZE type | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CREFP | Device for consumption reduction of the external section at variable speed (phase-
cutting) | • | • | • | • | • | • | • | • | • | • | Standard 0 Option X Not available $^{0^*}$ Necessary matching: variable flow-rate control and built-in inverter pumps # **Option compatiblity - PREMIUM version** # **Acoustic configuration: compressor soundproofing (SC)** | REFERENCE | DESCRIPTION | 120.4 | 140.4 | 160.4 | 180.4 | 200.4 | 220.4 | 240.4 | |-----------------|---|--------------|-------------|------------|------------|----------|-------|-------| | | CONFIGURATIONS AND MAII | N ACCESSORI | ES | | | | | | | В | Water low temperature | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | D | Partial energy recovery | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | R | Total energy recovery | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | B + D | Water low temperature + Partial energy recovery | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | B+R | Water low temperature + Total energy recovery | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | A550 | 550 l. storage tank | 0 | 0 | 0 | х | х | х | Х | | A700 | 700 l. storage tank | Х | х | х | 0 | 0 | х | Х | | A900 | 900 l. storage tank | Х | х | х | Х | х | 0 | 0 | | | STORAGE TANK AND PUMP WITH PRI | MARY CIRCU | IT BUILT-IN | ' | ' | ' | • | | | A550PPS | 550 l. storage tank with primary circuitwith pump built-in | 0 | 0 | 0 | х | х | х | Х | | A700PPS | 700 l. storage tank with primary circuitwith pump built-in | х | х | х | 0 | 0 | х | Х | | A900PPS | 900 l. storage tank with primary circuitwith pump built-in | Х | х | х | х | х | 0 | 0 | | | 2PM - HYDROPACK USER SIDE | WITH 2 PUN | MPS | | | <u> </u> | |
| | (PU20) | Pump 20 | 0 | 0 | 0 | Х | Х | Х | Х | | (PU21) / (PU22) | Pump 21 / Pump 22 | 0 | 0 | 0 | 0 | х | х | Х | | (PU26) | Pump 26 | Х | Х | х | 0 | 0 | 0 | 0 | | + A550PPS | + 550 l. storage tank with primary circuitwith pump built-in | х | х | х | х | х | х | Х | | + A700PPS | + 700 l. storage tank with primary circuitwith pump built-in | Х | х | Х | Х | Х | Х | Х | | + A900PPS | + 900 l. storage tank with primary circuitwith pump built-in | Х | х | Х | Х | х | Х | Х | | + A550 | + 550 l. storage tank | 0 | 0 | 0 | Х | Х | Х | Х | | + A700 | + 700 l. storage tank | х | х | Х | 0 | 0 | Х | Х | | + A900 | + 900 l. storage tank | х | х | х | х | х | 0 | 0 | | | 3PM - HYDROPACK USER SIDE | WITH 3 PUN | MPS | | I | ı | 1 | | | (PU20) | Pump 20 | Х | х | х | х | 0 | 0 | Х | | (PU21) | Pump 21 | Х | х | 0 | 0 | 0 | 0 | 0 | | (PU22) | Pump 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | + A550PPS | + 550 l. storage tank with primary circuitwith pump built-in | Х | х | х | Х | х | Х | Х | | + A700PPS | + 700 l. storage tank with primary circuitwith pump built-in | Х | х | Х | Х | Х | Х | Х | | + A900PPS | + 900 l. storage tank with primary circuitwith pump built-in | Х | х | Х | Х | Х | Х | Х | | + A550 | + 550 l. storage tank | 0 | 0 | 0 | Х | Х | Х | Х | | + A700 | + 700 l. storage tank | Х | х | Х | 0 | 0 | Х | Х | | + A900 | + 900 l. storage tank | х | х | Х | Х | х | 0 | 0 | | | 2PMV - HYDROPACK USER SIDE WITH N | IO.2 OF INVE | RTER PUMPS | | I. | I | 1 | | | (PU22) | Pump 22 | 0 | х | х | Х | х | х | Х | | | 3PMV - HYDROPACK USER SIDE WITH N | IO.3 OF INVE | RTER PUMPS | | | | | | | (PU22) | Pump 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | IVFDT - INVERTER DRIVEN VARIABLE FLOW-RATE USER SIDE CONTR | OL DEPENDI | NG ON THE T | EMPERATURE | DIFFERENTI | AL | | | | (2PM) / (3PM) | Hydropack user side with no. 2 of pumps / Hydropack user side with no. 3 of pumps | Х | Х | Х | Х | Х | Х | Х | | (2PMV) / (3PMV) | Hydropack user side with no.2 of inverter pumps / Hydropack user side with no.3 of inverter pumps | 0* | 0* | 0* | 0* | 0* | 0* | 0* | | | OTHER ACCESSOR | RIES | | | | | | | | CREFB | Device for fan consumption reduction of the external section, ECOBREEZE type | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CREFP | Device for consumption reduction of the external section at variable speed (phase-cutting) | • | • | • | • | • | • | • | [•] Standard 0 Option X Not available $^{0^*}$ Necessary matching: variable flow-rate control and built-in inverter pumps # **Option compatiblity - EXCELLENCE version** # **Acoustic configuration: super-silenced (EN)** | REF. | DESCRIPTION | 90.4 | 100.4 | 110.4 | 120.4 | 140.4 | 160.4 | 180.4 | 200.4 | 220.4 | 240.4 | |--------------------|---|----------|-----------|------------|------------|-------|----------|-------|-------|-------|-------| | | CONFIGURATIONS AN | | | | | | | | | | | | В | Water low temperature | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | D | Partial energy recovery | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | R | Total energy recovery | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | B + D | Water low temperature + Partial energy recovery | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | B + R | Water low temperature + Total energy recovery | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | A550 | 550 L storage tank | 0 | 0 | 0 | 0 | Х | Х | Х | Х | Х | Х | | A700 | 700 L storage tank | Х | Х | Х | Х | 0 | 0 | 0 | Х | Х | Х | | A900 | 900 L storage tank | Х | Х | Х | Х | Х | Х | Х | 0 | 0 | 0 | | | STORAGE TANK AND PUMP WIT | TH PRIMA | RY CIRCU | IT BUILT-I | N | | | | | | | | A550PPS | 550 l. storage tank with primary circuitwith pump built-in | 0 | 0 | 0 | 0 | Х | Х | Х | Х | Х | Х | | A700PPS | 700 l. storage tank with primary circuitwith pump built-in | Х | Х | Х | Х | 0 | 0 | 0 | Х | Х | Х | | A900PPS | 900 l. storage tank with primary circuitwith pump built-in | Х | Х | Х | Х | Х | Х | Х | 0 | 0 | 0 | | | 2PM - HYDROPACK USE | R SIDE W | ITH 2 PU | MPS | | | | | | | | | (PU20) | Pump 20 | 0 | 0 | 0 | 0 | 0 | 0 | Х | Х | Х | Х | | (PU21) / (PU22) | Pump 21 / Pump 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Х | Х | Х | | (PU27) | Pump 27 | Х | Х | Х | Х | Х | Х | Х | Х | 0 | 0 | | + A550PPS | + 550 l. storage tank with primary circuitwith pump built-in | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | | + A700PPS | + 700 l. storage tank with primary circuitwith pump built-in | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | | + A900PPS | + 900 l. storage tank with primary circuitwith pump built-in | Χ | Х | Х | Х | Х | Х | Х | Х | Х | Х | | + A550 | + 550 l. storage tank | 0 | 0 | 0 | 0 | Х | Х | Х | Х | Х | Х | | + A700 | + 700 l. storage tank | Х | Х | Х | Х | 0 | 0 | 0 | Х | Х | Х | | + A900 | + 900 l. storage tank | Х | Х | Х | Х | Х | Х | Х | 0 | 0 | 0 | | | 3PM - HYDROPACK USE | R SIDE W | ITH 3 PU | MPS | | | | | | | | | (PU20) | Pump 20 | Х | Х | Х | Х | Х | Х | Х | 0 | 0 | Х | | (PU21) | Pump 21 | Х | Х | Х | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | (PU22) | Pump 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | + A550PPS | + 550 l. storage tank with primary circuitwith pump built-in | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | | + A700PPS | + 700 l. storage tank with primary circuitwith pump built-in | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | | + A900PPS | + 900 l. storage tank with primary circuitwith pump built-in | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | | + A550 | + 550 l. storage tank | 0 | 0 | 0 | 0 | Х | Х | Х | Х | Х | Х | | + A700 | + 700 l. storage tank | Х | Х | Х | Х | 0 | 0 | 0 | Х | Х | Х | | + A900 | + 900 l. storage tank | Х | Х | Х | Х | Х | Х | Х | 0 | 0 | 0 | | | 2PMV - HYDROPACK USER SIDE V | VITH NO. | 2 OF INVE | RTER PUN | 1PS | | | | | | | | (PU22) | Pump 22 | 0 | 0 | 0 | 0 | Х | Х | Х | Х | Х | Х | | | 3PMV - HYDROPACK USER SIDE V | VITH NO. | 3 OF INVE | RTER PUN | IPS | | | | | | | | (PU22) | Pump 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | IVFDT - INVERTER DRIVEN VARIABLE FLOW-RATE USER SIDE | | DEPENDI | NG ON TH | | | FFERENTI | | | | | | (2PM) / (3PM) | Hydropack user side with no. 2 of pumps / Hydropack user side with no. 3 of pumps | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | | (2PMV) /
(3PMV) | Hydropack user side with no.2 of inverter pumps / Hydropack user side with no.3 of inverter pumps | 0* | 0* | 0* | 0* | 0* | 0* | 0* | 0* | 0* | 0* | | CDEED | OTHER ACC | | | | | | | | | | | | CREFB | Device for fan consumption reduction of the external section, ECOBREEZE type | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CREFP | Device for consumption reduction of the external section at variable speed (phase-
cutting) | • | • | • | • | • | • | • | • | • | • | $^{^{\}bullet}\, Standard$ 0 Option X Not available 0^* Necessary matching: variable flow-rate control and built-in inverter pumps # **Option compatiblity - PREMIUM version** # **Acoustic configuration: super-silenced (EN)** | REF. | DESCRIPTION | 120.4 | 140.4 | 160.4 | 180.4 | 200.4 | 220.4 | 240.4 | |----------------------------------|--|--------------|------------|-------|-------|-------|-------|-------| | | CONFIGURATIONS AND MAII | N ACCESSORI | ES | | | | | | | В | Water low temperature | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | D | Partial energy recovery | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | R | Total energy recovery | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | B + D | Water low temperature + Partial energy recovery | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | B+R | Water low temperature + Total energy recovery | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | A550 | 550 l. storage tank | 0 | 0 | 0 | х | Х | х | Х | | A700 | 700 l. storage tank | Х | Х | х | 0 | 0 | х | Х | | A900 | 900 l. storage tank | Х | Х | х | Х | Х | 0 | 0 | | | STORAGE TANK AND PUMP WITH PRI | MARY CIRCU | T BUILT-IN | | | | | | | A550PPS | 550 l. storage tank with primary circuitwith pump built-in | 0 | 0 | 0 | Х | Х | Х | Х | | A700PPS | 700 l. storage tank with primary circuitwith pump built-in | Х | х | х | 0 | 0 | Х | Х | | A900PPS | 900 l. storage tank with primary circuitwith pump built-in | Х | х | х | Х | Х | 0 | 0 | | | 2PM - HYDROPACK WITI | H 2 PUMPS | | | | | | | | (PU20) | Pump 20 | 0 | 0 | 0 | Х | Х | Х | Х | | (PU21) / (PU22) | Pump 21 / Pump 22 | 0 | 0 | 0 | 0 | 0 | Х | Х | | (PU27) | Pump 27 | Х | Х | Х | Х | Х | 0 | 0 | | + A550PPS | + 550 l. storage tank with primary circuitwith pump built-in | Х | Х | Х | Х | Х | Х | Х | | + A700PPS | + 700 l. storage tank with primary circuitwith pump built-in | Х | Х | Х | Х | Х | Х | Х | | + A900PPS | + 900 l. storage tank with primary circuitwith pump built-in | Х | Х | Х | Х | Х | Х | Х | | + A550 | + 550 l. storage tank | 0 | 0 | 0 | Х | Х | Х | Х | | + A700 | + 700 l. storage tank | Х | х | х | 0 | 0 | Х | Х | | + A900 | + 900 l. storage tank | Х | х | х | Х | Х | 0 | 0 | | | 3PM - HYDROPACK WITI | H 3 PUMPS | | T | T | | T. | T | | (PU20) | Pump 20 | Х | Х | Х | Х | Х | 0 | 0 | | (PU21) | Pump 21 | Х | Х | Х | 0 | 0 | 0 | 0 | | (PU22) | Pump 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | + A550PPS | + 550 l. storage tank with primary circuitwith pump built-in | Х | х | х | Х | Х | Х | Х | | + A700PPS | + 700 l. storage tank with primary circuitwith pump built-in | Х | Х | х | Х | Х | Х | Х | | + A900PPS | + 900 l. storage tank with primary circuitwith pump built-in | Х | Х | Х | Х | Х | Х | Х | | + A550 | + 550 l. storage tank | 0 | 0 | 0 | Х | Х | Х | Х | | + A700 | + 700 l. storage tank | Х | Х | х | 0 | 0 | Х | Х | | + A900 | + 900 l. storage tank | Х | Х | Х | Х | Х | 0 | 0 | | | 2PMV - HYDROPACK USER SIDE WITH N | IO.2 OF INVE | RTER PUMPS | T | T | | T | T | | (PU22) | Pump 22 | 0 | Х | Х | Х | Х | Х | Х | | (Duna) | 3PMV - HYDROPACK USER SIDE WITH N | | | I | | | | | | (PU22) | Pump 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | (2DM) / (2DM) | IVFDT - INVERTER DRIVEN VARIABLE FLOW-RATE
USER SIDE CONTR
Hydropack user side with no. 2 of pumps / Hydropack user side with no. 3 of pumps | | | | 1 | | V | v | | (2PM) / (3PM)
(2PMV) / (3PMV) | Hydropack user side with no. 2 of pumps / Hydropack user side with no. 3 of pumps Hydropack user side with no.2 of inverter pumps / Hydropack user side with no.3 of inverter pumps | 0* | 0* | 0* | 0* | 0* | 0* | 0* | | | OTHER ACCESSOR | RIES | | | | | | | | CREFB | Device for fan consumption reduction of the external section, ECOBREEZE type | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Device for consumption reduction of the external section at variable speed (phase- | | | | | | | | [•] Standard 0 Option X Not available 0* Necessary matching: variable flow-rate control and built-in inverter pumps # **Dimensional drawings** Size 90.4-120.4 - EXCELLENCE version Size 120.4-160.4 - PREMIUM version ## Acoustic configuration: Compressor soundproofing (SC) / Super-silenced (EN) DAB8T90 4_120 4_EXC_PRM_SC_EN_0 Data/Date 02/07/2015 - 1. External exchanger (condenser) - 2. Antivibration fixing holes ø 25mm - 3. Lifting brackets (removable, if required, after positioning the unit) - 4. General electrical panel - 5. Power input - 6. Suggested clearance - 7. Recovery side exchanger water inlet (optional) - 8. Recovery side exchanger water outlet (optional) - 9. Water inlet user side of no pumps unit / Water outlet user side of unit with pumps (optional) - 10. Water outlet user side of no pumps unit / Water inlet user side of unit with pumps (optional) | | | | SC- | EXC | | | SC-PRM | | | EN- | EXC | | | EN-PRM | | |-------------------------|----|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|--------|-------| | Size | | 90.4 | 100.4 | 110.4 | 120.4 | 120.4 | 140.4 | 160.4 | 90.4 | 100.4 | 110.4 | 120.4 | 120.4 | 140.4 | 160.4 | | H (without Axitop) | mm | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | | OD (internal exchanger) | mm | 114,3 | 114,3 | 114,3 | 114,3 | 114,3 | 114,3 | 114,3 | 114,3 | 114,3 | 114,3 | 114,3 | 114,3 | 114,3 | 114,3 | | OD1 (partial recovery) | mm | 76,1 | 76,1 | 76,1 | 76,1 | 76,1 | 76,1 | 76,1 | 76,1 | 76,1 | 76,1 | 76,1 | 76,1 | 76,1 | 76,1 | | OD2 (total recovery) | mm | 114,3 | 114,3 | 114,3 | 114,3 | 114,3 | 114,3 | 139,7 | 114,3 | 114,3 | 114,3 | 114,3 | 114,3 | 114,3 | 139,7 | | A - Length | mm | 4149 | 4149 | 4149 | 4149 | 4149 | 4149 | 4149 | 4149 | 4149 | 4149 | 4149 | 4149 | 4149 | 4149 | | B - Depth | mm | 2243 | 2243 | 2243 | 2243 | 2243 | 2243 | 2243 | 2243 | 2243 | 2243 | 2243 | 2243 | 2243 | 2243 | | C - Height | mm | 2668 | 2668 | 2668 | 2668 | 2668 | 2668 | 2668 | 2668 | 2668 | 2668 | 2668 | 2668 | 2668 | 2668 | | W1 Supporting point | kg | 847 | 885 | 897 | 932 | 900 | 939 | 966 | 847 | 885 | 897 | 932 | 900 | 939 | 966 | | W2 Supporting point | kg | 514 | 542 | 545 | 563 | 527 | 558 | 573 | 514 | 542 | 545 | 563 | 527 | 558 | 573 | | W3 Supporting point | kg | 838 | 876 | 889 | 927 | 893 | 934 | 962 | 838 | 876 | 889 | 927 | 893 | 934 | 962 | | W4 Supporting point | kg | 505 | 533 | 538 | 557 | 519 | 553 | 569 | 505 | 533 | 538 | 557 | 519 | 553 | 569 | | Shipping weight | kg | 2594 | 2721 | 2754 | 2859 | 2721 | 2865 | 2948 | 2594 | 2721 | 2754 | 2859 | 2721 | 2865 | 2948 | | Operating weight | kg | 2704 | 2836 | 2869 | 2979 | 2839 | 2984 | 3070 | 2704 | 2836 | 2869 | 2979 | 2839 | 2984 | 3070 | | | Ci | | SC-EXC | | | | SC-PRM | | | EN-EXC | | | | EN-PRM | | | | |---------------------------|----|------|--------|-------|-------|-------|--------|-------|------|--------|-------|-------|-------|--------|-------|--|--| | Size | | 90.4 | 100.4 | 110.4 | 120.4 | 120.4 | 140.4 | 160.4 | 90.4 | 100.4 | 110.4 | 120.4 | 120.4 | 140.4 | 160.4 | | | | Container shipping length | mm | 4209 | 4209 | 4209 | 4209 | 4209 | 4209 | 4209 | 4209 | 4209 | 4209 | 4209 | 4209 | 4209 | 4209 | | | | Container shipping depth | mm | 2343 | 2343 | 2343 | 2343 | 2343 | 2343 | 2343 | 2343 | 2343 | 2343 | 2343 | 2343 | 2343 | 2343 | | | | Container shipping height | mm | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | | | The presence of optional accessories may result in a substantial variation of the weights shown in the table. Fan diffusers are separately supplied. ### Size 140.4-180.4 - EXCELLENCE version #### Size 180.4-200.4 - PREMIUM version ## Acoustic configuration: Compressor soundproofing (SC) / Super-silenced (EN) ## DAB8T140 4_180 4_EXC_PRM_SC_EN_0 Data/Date 06/07/2015 - 1. External exchanger (condenser) - 2. Antivibration fixing holes ø 25mm - 3. Lifting brackets (removable, if required, after positioning the unit) - 4. General electrical panel - 5. Power input - 6. Suggested clearance - 7. Recovery side exchanger water inlet (optional) - 8. Recovery side exchanger water outlet (optional) - 9. Water inlet user side of no pumps unit / Water outlet user side of unit with pumps (optional) - 10. Water outlet user side of no pumps unit / Water inlet user side of unit with pumps (optional) | c. | | | SC-EXC | | SC-I | PRM | | EN-EXC | | EN- | PRM | |-------------------------|----|-------|--------|-------|-------|-------|-------|--------|-------|-------|-------| | Size | | 140.4 | 160.4 | 180.4 | 180.4 | 200.4 | 140.4 | 160.4 | 180.4 | 180.4 | 200.4 | | H (without Axitop) | mm | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | | OD (internal exchanger) | mm | 114,3 | 114,3 | 114,3 | 114,3 | 139,7 | 114,3 | 114,3 | 114,3 | 114,3 | 139,7 | | OD1 (partial recovery) | mm | 76,1 | 76,1 | 76,1 | 76,1 | 76,1 | 76,1 | 76,1 | 76,1 | 76,1 | 76,1 | | OD2 (total recovery) | mm | 114,3 | 139,7 | 139,7 | 139,7 | 139,7 | 114,3 | 139,7 | 139,7 | 139,7 | 139,7 | | A - Length | mm | 5124 | 5124 | 5124 | 5124 | 5124 | 5124 | 5124 | 5124 | 5124 | 5124 | | B - Depth | mm | 2243 | 2243 | 2243 | 2243 | 2243 | 2243 | 2243 | 2243 | 2243 | 2243 | | C - Height | mm | 2668 | 2668 | 2668 | 2668 | 2668 | 2668 | 2668 | 2668 | 2668 | 2668 | | W1 Supporting point | kg | 1053 | 1083 | 1206 | 1139 | 1177 | 1053 | 1083 | 1206 | 1139 | 1177 | | W2 Supporting point | kg | 672 | 690 | 748 | 673 | 704 | 672 | 690 | 748 | 673 | 704 | | W3 Supporting point | kg | 1042 | 1074 | 1202 | 1132 | 1173 | 1042 | 1074 | 1202 | 1132 | 1173 | | W4 Supporting point | kg | 661 | 681 | 743 | 665 | 700 | 661 | 681 | 743 | 665 | 700 | | Shipping weight | kg | 3274 | 3371 | 3737 | 3453 | 3593 | 3274 | 3371 | 3737 | 3453 | 3593 | | Operating weight | kg | 3428 | 3528 | 3899 | 3609 | 3754 | 3428 | 3528 | 3899 | 3609 | 3754 | | | | SC-EXC | | | SC-PRM | | EN-EXC | | | EN-PRM | | |---------------------------|----|--------|-------|-------|--------|-------|--------|-------|-------|--------|-------| | Size | | | 160.4 | 180.4 | 180.4 | 200.4 | 140.4 | 160.4 | 180.4 | 180.4 | 200.4 | | Container shipping length | mm | 5184 | 5184 | 5184 | 5184 | 5184 | 5184 | 5184 | 5184 | 5184 | 5184 | | Container shipping depth | mm | 2343 | 2343 | 2343 | 2343 | 2343 | 2343 | 2343 | 2343 | 2343 | 2343 | | Container shipping height | mm | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | The presence of optional accessories may result in a substantial variation of the weights shown in the table. Fan diffusers are separately supplied. ## Size 200.4-240.4 - EXCELLENCE version #### Size 220.4-240.4 - PREMIUM version ## Acoustic configuration: Compressor soundproofing (SC) / Super-silenced (EN) # DAB8T200 4_240 4_EXC_PRM_SC_EN_0 Data/Date 02/07/2015 - 1. External exchanger (condenser) - 2. Antivibration fixing holes ø 25mm - 3. Lifting brackets (removable, if required, after positioning the unit) - 4. General electrical panel - 5. Power input - 6. Suggested clearance - 7. Recovery side exchanger water inlet (optional) - 8. Recovery side exchanger water outlet (optional) - 9. Water inlet user side of no pumps unit / Water outlet user side of unit with pumps (optional) - 10. Water outlet user side of no pumps unit / Water inlet user side of unit with pumps (optional) | Size | | SC-EXC | | | SC-PRM | | EN-EXC | | | EN-PRM | | |-------------------------|----|--------|-------|-------|--------|-------|--------|-------|-------|--------|-------| | | | 200.4 | 220.4 | 240.4 | 220.4 | 240.4 | 200.4 | 220.4 | 240.4 | 220.4 | 240.4 | | H (without Axitop) | mm | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | | OD (internal exchanger) | mm | 139,7 | 139,7 | 139,7 | 139,7 | 139,7 | 139,7 | 139,7 | 139,7 | 139,7 | 139,7 | | OD1 (partial recovery) | mm | 76,1 | 76,1 | 76,1 | 76,1 | 76,1 | 76,1 | 76,1 | 76,1 | 76,1 | 76,1 | | OD2 (total recovery) | mm | 139,7 | 139,7 | 139,7 | 139,7 | 139,7 | 139,7 | 139,7 | 139,7 | 139,7 | 139,7 | | A - Length | mm | 5994 | 5994 | 5994 | 5994 | 5994 | 5994 | 5994 | 5994 | 5994 | 5994 | | B - Depth | mm | 2243 | 2243 | 2243 | 2243 | 2243 | 2243 | 2243 | 2243 | 2243 | 2243 | | C - Height | mm | 2668 | 2668 | 2668 | 2668 | 2668 | 2668 | 2668 | 2668 | 2668 | 2668 | | W1 Supporting point | kg | 1331 | 1366 | 1414 | 1310 | 1376 | 1331 | 1366 | 1414 | 1310 | 1376 | | W2 Supporting point | kg | 871 | 889 | 925 | 833 | 883 | 871 | 889 | 925 | 833 | 883 | | W3 Supporting point | kg | 1321 | 1380 | 1413 | 1315 | 1372 | 1321 | 1380 | 1413 | 1315 | 1372 | | W4 Supporting point | kg | 861 | 903 | 924 | 838 | 879 | 861 | 903 | 924 | 838 | 879 | | Shipping weight | kg | 4185 | 4332 | 4468 | 4097 | 4305 | 4185 | 4332 | 4468 | 4097 | 4305 | | Operating weight | kg | 4384 | 4538 | 4676 | 4296 | 4510 | 4384 | 4538 | 4676 | 4296 | 4510 | | Size | | SC-EXC | | | SC-PRM | | EN-EXC | | | EN-PRM | | |---------------------------|----|--------|-------|-------|--------|-------|--------|-------|-------|--------|-------| | | | 200.4 | 220.4 | 240.4 | 220.4 | 240.4 | 200.4 | 220.4 | 240.4 | 220.4 | 240.4 | | Container shipping length | mm | 6054 | 6054 | 6054 | 6054 | 6054 | 6054 | 6054 | 6054 | 6054 | 6054 | | Container shipping depth | mm
 2343 | 2343 | 2343 | 2343 | 2343 | 2343 | 2343 | 2343 | 2343 | 2343 | | Container shipping height | mm | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | 2484 | The presence of optional accessories may result in a substantial variation of the weights shown in the table. Fan diffusers are separately supplied. Page intentionally left blank Page intentionally left blank Page intentionally left blank #### **CLIVET SPA** Via Camp Lonc 25, Z.I. Villapaiera - 32032 Feltre (BL) - Italy Tel. + 39 0439 3131 - Fax + 39 0439 313300 - info@clivet.it #### **CLIVET UK LTD (Sales)** 4 Kingdom Close, Segensworth East - Fareham, Hampshire - PO15 5TJ - United Kingdom Tel. + 44 (0) 1489 572238 - Fax + 44 (0) 1489 573033 - info@clivet-uk.co.uk ### **CLIVET AIRCON LTD (Service and Maintenance Division)** Units F5&F6 Railway Triangle Ind EST, Walton Road - Portsmouth, Hampshire - PO6 1 TG - United Kingdom Tel. + 44 (0) 2392 381235 - Fax + 44 (0) 2392 381243 - info@clivetaircon.co.uk ### **CLIVET ESPAÑA COMERCIAL S.L. (Sales)** Calle Gurb, 17 1° 1° - 08500 Vic, Barcelona - España Tel. + 34 93 8606248 - Fax + 34 93 8855392 - info@clivetcomercial.es ### **CLIVET ESPAÑA S.A.U. (Service and Maintenance Division)** Calle Real de Burgos n°12 - 28860, Paracuellos del Jarama, Madrid - España Tel. + 34 91 6658280 - Fax + 34 91 6657806 - info@clivet.es ### **CLIVET GmbH** Hummelsbütteler Steindamm 84, 22851 Norderstedt - Germany Tel. + 49 (0) 40 32 59 57-0 - Fax + 49 (0) 40 32 59 57-194 - info.de@clivet.com #### **CLIVET RUSSIA** Elektrozavodskaya st. 24, office 509 - 107023, Moscow, Russia Tel. + 74956462009 - Fax + 74956462009 - info.ru@clivet.com #### CLIVET MIDEAST FZCO Dubai Silicon Oasis (DSO), High Bay Complex, Ind Unit No. 3 - PO Box 342009 - DUBAI, UAE Tel. + 97 14 3208499 - Fax + 97 14 3208216 - info@clivet.ae #### **CLIVET AIRCONDITIONING SYSTEMS PRIVATE LTD** 3C3, Gundecha Onclave - Kherani Road, Saki Naka, Andheri (East), Mumbai 400 072 (INDIA) Tel. + 91 - 22 - 6193 7000 - Fax + 91 - 22 - 6193 7001 - sales.india@clivet.com