

Installation and operating manual

Air-cooled liquid chiller in two sections

MSRT-XSC3 + CEV-XT 90.4-240.4

Dear Customer,

We congratulate you on choosing this product

For many years Clivet has been offering systems that provide maximum comfort, together with high reliability, efficiency, quality and safety.

The aim of the company is to offer advanced systems, that assure the best comfort, reduce energy consumption and the installation and maintenance cost for the life cycle of the system.

The purpose of this manual is to provide you with information that is useful from reception of the equipment, through installation, operational usage and finally disposal so that this advanced system offers the beat solution.

Yours faithfully.

CLIVET Spa

Index of contents

1	General description	4
2	Reception	6
3	Positioning	8
4	Water connections	10
5	Refrigeranting connections	14
6	Electrical connections	18
7	Start-up	26
8	Control	35
9	Maintenance	47
10	Accessories	53
11	Decommissioning	55
12	Residual risks	56
	General technical date	57
	Dimensional drawings	69

1 General description

1.1 Manual

The manual provides correct unit installation, use and maintenance. Pay particular attention to:

- $\ref{eq:constraint}$ Warning, identifies particularly important operations or information.
 - Prohibited operations that must not be carried out, that compromise the operating of the unit or may cause damage to persons or things.
 - It is advisable to read it carefully so you will save time during operations.
 - Follow the written indications so you will not cause damages to things and injuries people.

1.2 Preliminaries

Only qualified personnel can operate on the unit, as required by the regulation in force.

1.3 Risk situations

The unit has been designed and created to prevent injures to people.

During designing it is not possible to plane and operate on all risk situation.

Read carefully "Residual risk" section where all situation which may cause damages to things and injuries to people are reported. Installation, starting, maintenance and repair required specific knowledge; if they are carried out by inexperienced personnel, they may cause damages to things and injuries people.

1.4 Intended use

Use the unit only:

- for cooling/heating water or a water and glycol mix
- keep to the limits foreseen in the technical schedule and in this manual

The manufacturer accepts no responsibility if the equipment is used for any purpose other than the intended use.

1.5 Installation

Outdoor installation

The positioning, hydraulic system, refrigerating, electrics and the ducting of the air must be determined by the system designer in accordance with local regulations in force.

Follow local safety regulations.

Verify that the electrical line characteristics are in compliance with data quotes on the unit serial number label.

1.6 Maintenance

Plan periodic inspection and maintenance in order to avoid or reduce repairing costs.

Turn the unit off before any operation.

1.7 Modification

All unit modifications will end the warranty coverage and the manufacturer responsibility.

1.8 Breakdown/Malfuction

Disable the unit immediately in case of breakdown or malfunction. Contact a certified service agent. Use original spares parts only.

Using the unit in case of breakdown or malfunction:

- voids the warranty
- it may compromise the safety of the unit
- may increase time and repair costs

1.9 User training

- The installer has to train the user on:
 - Start-up/shutdown
 - Set points change
 - Standby mode
 - Maintenance
 - What to do / what not to do in case of breakdown

1.10 Data update

Continual product improvements may imply manual data changes. Visit manufacturer web site for updated data.

1.11 Indications for the User

 $\underline{(\mathbf{N})}$ Keep this manual with the wiring diagram in an accessible place for the operator.

Note the unit data label so you can provide them to the assistance centre in case of intervention (see "Unit identification" section). Provide a unit notebook that allows any interventions carried out on the unit to be noted and tracked making it easier to suitably note the various interventions and aids the search for any breakdowns.

In case of breakdown or malfunction:

- Immediately deactivate the unit
- Contact a service centre authorized by the manufacturer
- The installer must train the user, particularly on:
 - Start-up/shutdown
 - Set points change
 - Standby mode
 - Maintenance
 - What to do / what not to do in case of breakdown

1.12 Unit indentification

The serial number label is positioned on the unit and allows to indentify all the unit features. The matriculation plate shows the indications foreseen by the standards, in particular:

- unit type
- serial number (12 characters)
- year of manufacture
- wiring diagram number
- electrical data
- type of refrigerant
- refrigerant charge
- manufacturer logo and address

The matriculation plate must never be removed.

It contains fluorinated greenhouse gases Type of refrigerant: R410A

1.13 Serial number

0

It identifies uniquely each unit. Must be quoted when ordering spare parts.

1.14 Assistance request

Note data from the serial number label and write them in the chart on side, so you will find them easily when needed.

Series
Size
Serial number
Year of manufacture
Electrical wiringdiagram

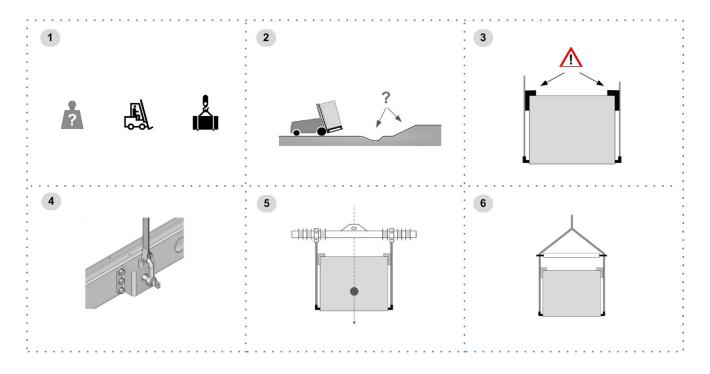
2 Reception

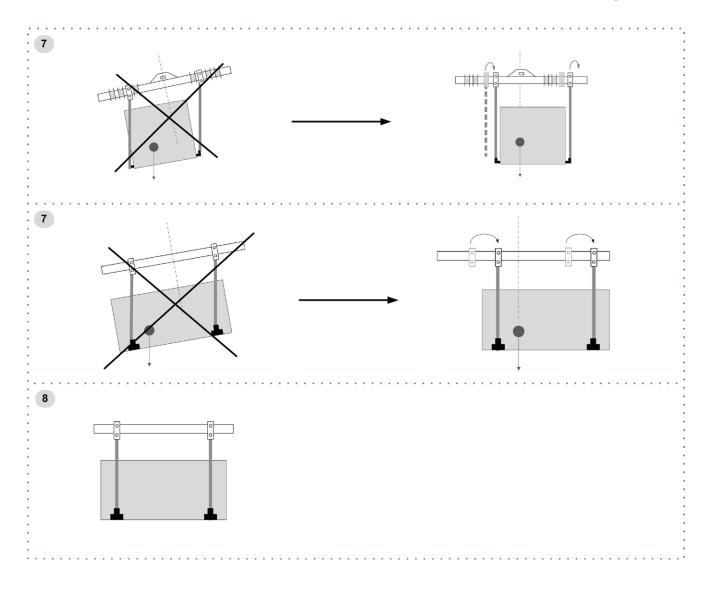
•••••••••••••••••••••••••••••••••••••••								
:	1							
•	•							

You have to check before accepting the delivery:

- That the unit hasn't been damaged during transport
- That the materials delivered correspond with that indicated on the transport document comparing the data with the identification label positioned on the packaging.

In case of damage or anomaly:


- Write down on the transport document the damage you found and quote this sentence: "Conditional acceptance clear evidence of deficiencies/damages during transport"
- Contact by fax and registered mail with advice of receipt to supplier and the carrier.
- Any disputes must be made within 8 days from the date of the delivery. Complaints after this period are invalid.


2.1 Storage

Observe external packaging instructions.

2.2 Handling

- 1. Verify unit weight and handling equipment lifting capacity.
- 2. Identify critical points during handling (disconnected routes, flights, steps, doors).
- 3. Suitably protect the unit to prevent damage.
- 4. lifting brackets
- 5. Lifting with balance
- 6. Lifting with spacer bar
- 7. Align the barycenter to the lifting point
- 8. Use all the lifting brackets (see the dimensional section)
- 9. Gradually bring the lifting belts under tension, making sure they are positioned correctly.
- 10. Before starting the handling, make sure that the unit is stable.

2.3 Packaging removing

Be careful not to damage the unit. Keep packing material out of children's reach it may be dangerous. Recycle and dispose of the packaging material in conformity with local regulations.

A Supports for handling: remove after the handling.

B Remove the coil protective mesh before the start-up

3 Positioning

During positioning consider these elements:

- Technical spaces requested by the unit
- Electrical connections
- Water connections
- Spaces for air exhaust and intake

3.1 Functional spaces

Functional spaces are designed to:

- guarantee good unit operation
- carry out maintenance operations
- protect authorized operators and exposed people
- Respect all functional spaces indicated in the DIMENSIONS section. Double all functional spaces if two or more unit are aligned.

3.2 Positioning

Units are designed to be installed:

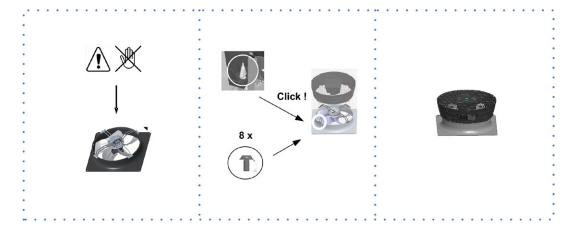
- EXTERNAL
- in fixed positions
- Limit vibration transmission:
- use anti-vibration devices or neoprene strips on the unit support points
- install flexible joints on the hydraulic connections
- install flexible joints on the hydraulic connections
- Choose the installation place according to the following criteria:
- Customer approval
- safe accessible position
- technical spaces requested by the unit
- spaces for the air intake/exhaust
- max. distance allowed by the electrical connections
- install the unit raised from the ground
- verify unit weight and bearing point capacity
- verify that all bearing points are aligned and leveled
- condensate water draining
- consider the maximum possible snow level
- Avoid installations in places subject to flooding

Protect the unit with suitable fence in order to avoid access to unauthorised personnel (children, vandals, etc.)

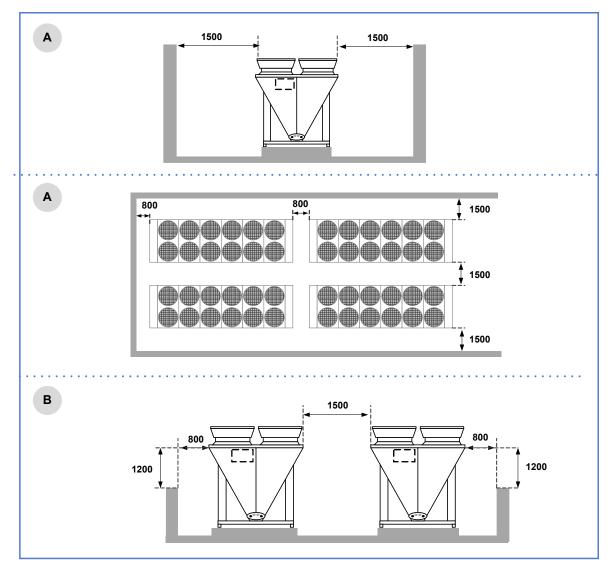
A correct circulation of the air is mandatory to guarantee the good unit operating.

0

• obstacles to the airflow


Avoid therefore:

- difficulty of exchange
- leaves or other foreign bodies that can obstruct the air coil
- winds that hinder or favour the airflow
- heat or pollution sources close to the unit (chimneys, extractors etc..)
- stratification (cold air that stagnates at the bottom)
- recirculation (expelled air that is sucked in again)
- incorrect positioning, close to very high walls, attics or in angles that could give rise to stratification or recirculation phenomenons
- Ignoring the previous indications could:
- reduce energy efficiency
- alarm lockout due to HIGH PRESSURE (in summer) or LOW PRESSURE (in winter)


3.3 Saftey valve gas side

The installer is responsible for evaluating the opportunity of installing drain tubes, in conformity with the local regulations in force (EN 378).

3.4 AxiTop

3.5 Functional spaces

A full height wall: standard compliance spaces

B low height wall: reduced space

3.6 Anti-vibration mount support

For details see:

10 Accessories p. 53

4 Water connections

4.1 Water quality

Water features

- confirming to local regulations
- total hardness < 14°fr
- within the limits indicated by table

The water quality must be checked by qualified personnel. Water with inadequate characteristics can cause:

- pressure drop increase
- reduces energy efficiency
- increased corrosion potential
- Acceptable water quality values:

PH	7,5 ÷9,0		Free Chlorine	< 0,5	ppm
SO4 ²⁻	< 100	ppm	Fe₃ ⁺	< 0,5	ppm
HCO3 ⁻ /SO4 ²⁻	>1		Mn ⁺⁺	< 0,05	ppm
Total Hardness	4,5 ÷8,5	dH	CO ₂	< 50	ppm
CI	< 50	ppm	H ₂ S	< 50	ppb
PO4 ³⁻	< 2,0	ppm	Temperature	< 65	°C
NH3	< 0,5	ppm	Oxygen content	< 0,1	ppm

Provide a water treatment system if values fall outside the limits.

The warranty does not cover damages caused by limestone formations, deposits and impurities from the water supply and / or failure from failed system clearing to clean system.

4.2 Risk of freezing

If the unit or the relative water connections are subject to temperatures close to 0°C:

- mix water with glycol, or
- safeguard the pipes with heating cables placed under the insulation, or
- empty the system in cases of long non-use

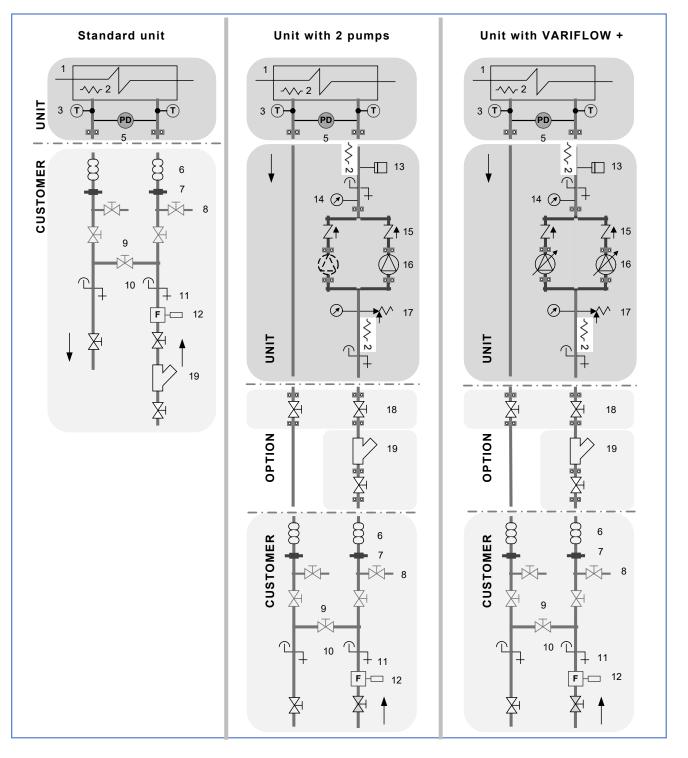
4.3 Anti-freeze solution

The use of an anti-freeze solution results in an increase in pressure drop.

- Make sure that the glycol type utilized is inhibited (not corrosive) and compatible with the water circuit components.
- O not use different glicol mixture (i.e. ethylene with propylene).

4.4 Water flow-rate

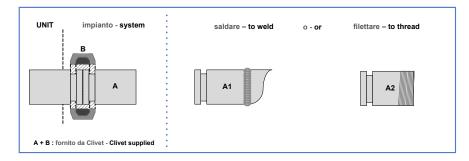
The project water-flow must be:


- within exchanger operating range
- guarantee, also with variable system conditions (for example in systems where some circuits are bypassed in particular situations).

4.5 Minimum system water content

Minimum system water volumes have to be satisfied to avoid continuous compressor switching on and off.

4.6 Recommended connection


- () The installer must define:
 - component type
 - position in system
 - Examples:

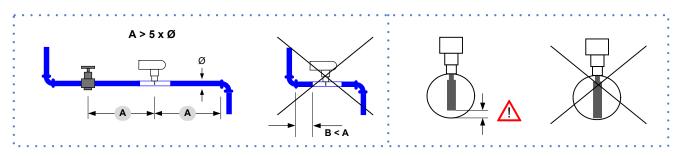
- 1 exchanger
- 2 Anti-ice electric heater
- 3 water temperature probe
- 5 differential pressure switch
- 6 antivibration joints
- 7 piping support
- 8 exchanger chemical cleaning bypass
- 9 Cleaning system bypass
- 10 vent

- 11 drain
- 12 Flow Switch
- 13 System load safety pressure switch
- 14 pressure gauge
- 15 non-return valve
- 16 Pump
- 17 safety valve
- 18 shut-off valve
- 19 filter

4.7 Hydraulic connections

- O not weld the system pipe with the Victaulic connection joint attached.
- The rubber gasket might be irreparably damaged.

4.8 Water filter


Use filter with mesh pitch:

1,6 mm

- / It must be installed immediately in the water input of the unit, in a position that is easily accessible for cleaning.
- Note that the second descent the second descent the second descent the second descent descent

4.9 Flow Switch

The flow switch must be present to ensure shutdown of the unit if water is not circulating.
 It has to be installed in a duct rectilinear part, not in proximity of curves that cause turbulences.
 Electrically connect the flow switch at the inlet arranged on the XC terminal block.
 The flow switch must be set to the minimum reachable flow rate.

A. minimum distance

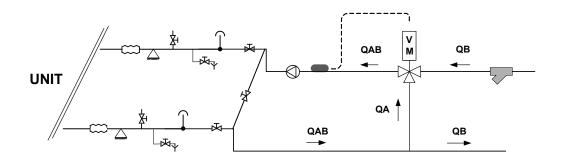
4.10 Operation sequence

Close all vent valves in the high points of the unit hydraulic circuit

- Close all drain valves in the low points of the unit hydraulic circuit:
- Heat exchangers
- Pumps
- collectors
- storage tank
- free-cooling coil
- 1. Carefully wash the system with clean water: fill and drain the system several times.
- 2. Apply additives to prevent corrosion, fouling, formation of mud and algae.
- 3. Fill the plant
- 4. Execute leakage test.
- 5. Isolate the pipes to avoid heat dispersions and formation of condensate.
- 6. Leave various point of service free (wells, vent-holes etc).
- Neglecting the washing will lead to several filter cleaning interventions and at worst cases can cause damages to the exchangers and the other parts.

4.11 Partial energy recovery

Option


A configuration which enables the production of hot water free-of-charge while operating in the cooling mode, thanks to the partial recovery of condensation heat that would otherwise be rejected to the external heat source.

The maximum capacity available from the partial recovery is equal to the 15% of the rejected heating capacity (cooling capacity + compressor power input)

The recovery exchanger must be always maintained full of water

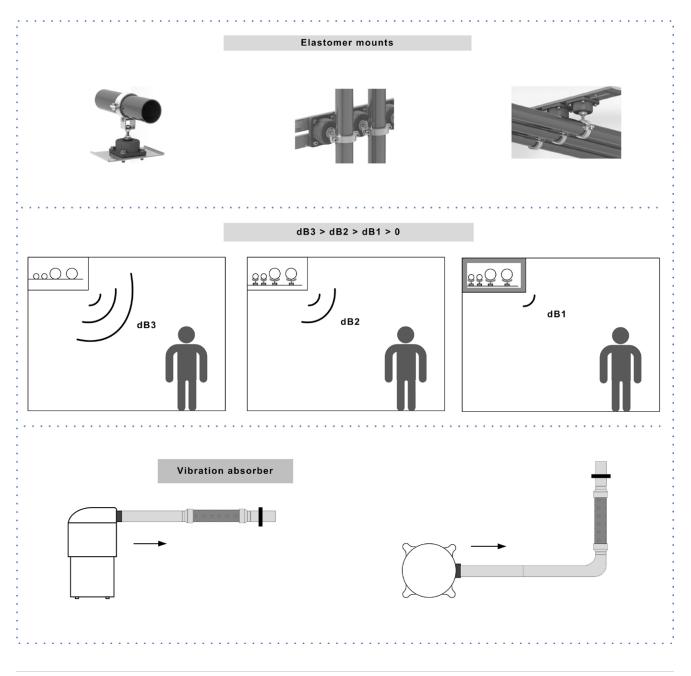
The lack of water amplifies the noise generated by the operation

When the temperature of the water to be heated is particularly low, it is wise to insert a flow-rate control valve into the system water circuit, in order to maintain the temperature at the recovery output at above 35°C and thus avoid the condensation of the refrigerant into the partial energy recovery device.

5 Refrigeranting connections

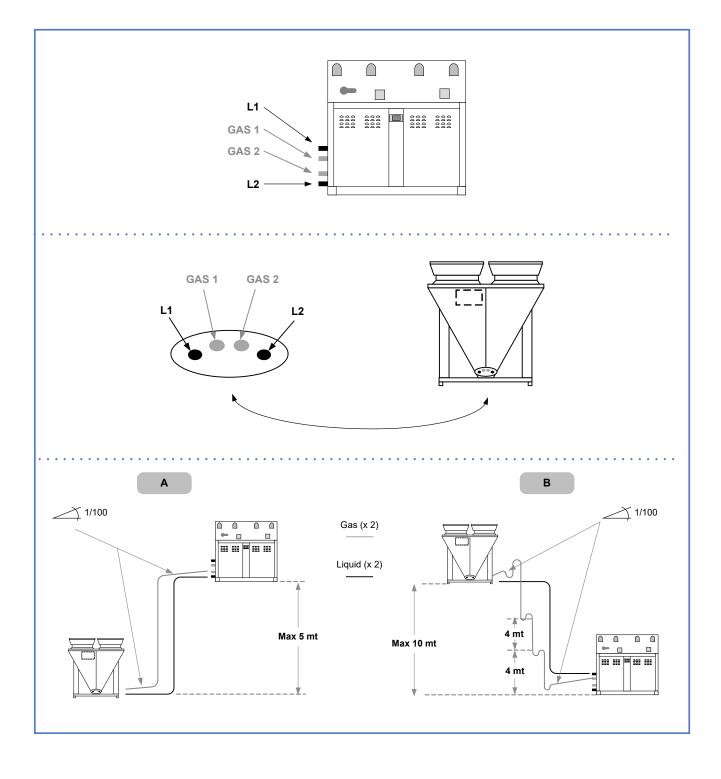
5.1 Pressure Equipment Directive

This unit is a subset: to operate it has to be combined to another unit.


It is an installer responsability:

- follow the PED Directive and to the national regulations of PED Directive realization
- consider the insertion of any additional security devices
- check the safety device operation
- write on the serial label number the amount of total refrigerant
- issue the Declaration of conformity
- inform the user of the need to carry out regular checks

5.2 Vibrations / Noise


 $\underline{(}$ The installation of the pipes may affect the level of noise in the system:

- install flexible joints between the unit and the pipes
- Install antivibration material between the brackets and the pipes so as to prevent the transmission of vibrations
- avoid the passage in particularly silent environments

5.3 General description

- The sizing of the refrigerating connection lines is of extreme importance for the system operating and reliability.
- The diameter of the connection between the two units is function of distances, differences in level and curve number; it has so to be calculated by a qualified technician.
- Incorrect sizing may damage the compressor or affect cooling capacity.
 - The operations must be performed by an expert refrigerator technician
 - use only a copper pipe for chiller operating
 - pipes must be perfectly clean (perform a cleaning with nitrogen or dry air before connecting the pipes to the two units) and without humidity to allow a good vacuum operation
 - pipes must not to be too much long and with too much curves
 - for a good efficiency do not perform curves with a radium too much short and avoid the pipe crushing
 - to allow the vacuum and charge operations install service fittings on pipes (if the unit is not fitted with taps with service fittings)

Maximum piping length and lift

	Total equivalent length (m)	Max. difference in height (m)
A	20	10
В	20	5

The equivalent length is the sum of the effective length of the piping plus a length that is equivalent to the distributed and concentrated pressure drop.

To determine the equivalent length refer to tables or data declared by the supplier of the piping. Located leaks

	Standard 90° bend	Wide radius 90° bend	Short radius 90° bend	Standard 45° bend	Short radius 45° bend	Standard 180° bend	Non retu
er for pipe kness		P. Constant	e ser	Care o	A loo		L L L L
າຫ			Lu	nghezza equivalente i	n m		
x1,2	0,8	0,5	1,2	0,4	0,6	1,2	3
x1,5	1,0	0,7	1,7	0,5	0,9	1,7	4
x2,0	1,2	0,8	1,9	0,6	1,0	1,9	4
x2,0	1,5	1,0	2,5	0,8	1,4	2,5	6

5.4 Risk of explosion

- (New York and Constall cut-off devices (solenoid valves, taps, etc.), be aware that they may cause traps for refrigerant in the form of closed zones upstream and downstream where the refrigerant cannot freely expand.
- In this situation, if there is an increase in temperature (due to exposure to the sun, proximity of pipes or sources of heat), the expansion of the trapped gas may cause the refrigeration pipes to explode.
- Evaluate whether safety valves can be installed, especially in the liquid pipes that are most exposed to this risk.

5.5 Supply line

Insulate only if you want to prevent burns due to accidental contact.

5.6 Liquid line

The liquid line must be insulated if it is exposed to the sunlight or it crosses zones with a temperature higher than the external one, otherwise it can be free.

Avoid excessive diameters to not cause an excessive refrigerant charge.

5.7 solenoid valve on the liquid line

It is not necessary to install a solenoid valve. The electronic thermostatic valve operates as a solenoid valve, also in case of blackout.

5.8 Checking for leaks

- 1 Check carefully that the evaporator unit taps are closed.
- 2 Connect the pressure gauges with the service fittings (on the taps or on the connection pipes).
- 3 Pressurise the system with nitrogen: mode 1: up to PS (see the label) and wait few hours mode 2: up to PS x 1,43 law (as according to UNI-EN 378-2)

CAUTION: EXPLOSION DANGER

- 4 Spray using a leak detector spray taps and pipes and check if bubbles are present (gas leaks).
- 5 Discharge the nitrogen from the unit.

5.9 Vacuum operations

Make sure that all the service outlets are closed with proper caps; if caps are not present a leak of refrigerant can be possible.

With the taps of the motor condenser closed, drain the system.

Using a gauge group, connect the vacuum pump on both connections of the taps, make sure that the solenoid valve or any intermediate taps are open, proceed with the vacuum.

Stop the pump at a pressure of about 100 Pa and leave it under vacuum for a few hours; a slight initial rise of pressure is normal, followed by stabilization.

If the pressure continues to rise, it means there are either small leaks or humidity is present. In the first case, repeat the operations in the paragraph on checking for leaks in the manual for the refrigerant pipes.

In the second case, recharge the system with refrigerant gas up to 100KPa and re-create the vacuum as described above.

Once the pressure is permanently stable, move on to the next phase, which is charging.

5.10 Refrigerant Charge

- Check the type of refrigerant on the serial number label
- The CED-XT units are shipped with a nitrogen-tight charge.
- The refrigerant charge must to be completed during the start-up phase, based on the type of indoor unit and on the pipe development.
 Refrigerant charge for combination with remote condenser

Size			90.4	100.4	110.4	120.4	140.4	160.4	180.4	200.4	220.4	240.4
	C1	[kg]	28	28	33	34	38	46	51	55	56	69
EXCELLENCE SC	C2	[kg]	28	27	33	34	37	45	50	54	62	68
DEFINITION	C1	[kg]	22	22	26	27	29	39	39	44	49	56
PREMIUM SC	C2	[kg]	22	22	26	26	29	38	39	43	55	55
	C1	[kg]	33	33	33	41	42	53	59	61	70	78
EXCELLENCE EN	C2	[kg]	32	33	33	41	41	52	58	60	76	77
	C1	[kg]	26	28	28	34	35	39	46	48	56	64
PREMIUM EN	C2	[kg]	25	27	28	34	34	38	46	47	62	62

Refrigerant charge for different equivalent lengths

	Circ	Refrigeration			Total equivalent length (m)				
	Size	Size circuit		10	15	20			
	00 4 140 4	(1	kg	+2,0	+5,5	+9,5			
	90.4-140.4	C2	kg	+2,0	+5,5	+9,5			
	160.4-200.4	(1	kg	+3,0	+8,0	+13,5			
Additional refrigorant charge		(2	kg	+3,0	+8,0	+13,5			
Additional refrigerant charge		C1	kg	+3,0	+8,0	+13,5			
	220.4	C2	kg	+4,5	+14,0	+23,5			
	240.4	(1	kg	+4,5	+14,0	+23,5			
	240.4	C2	kg	+4,5	+14,0	+23,5			

With the system under vacuum, close the taps of the gauge group and disconnect the vacuum pump. Connect the refrigerant gas tank, venting the air out of the hose for connection to the gauge group. Open the tap of the liquid line.

Open the taps of the gauge group and let liquid-state refrigerant enter using an appropriate pump. Once charging is complete, open the gas tap so that the unit is ready to be started.

5.11 Adding oil

Consider adding oil if the connection pipes are particularly long. Check the oil level of the compressor in the indicator or in the Schrader plug.

6 Electrical connections

The characteristics of the electrical lines must be determined by qualified electrica personnel able to design electrical installations; moreover, the lines must be in conformity with regulations in force.

The protection devices of the unit power line must be able to stop all short circuit current, the value must be determined in accordance with system features.

The power cables and the protection cable section must be defined in accordance with the characteristics of the protections adopted. All electrical operations should be performed by trained personnel having the necessary qualifications required by the regulations in force and being informed about the risks relevant to these activities.

Operate in compliance with safety regulations in force.

6.1 Electrical data

/ The serial number label reports the unit specific electrical data, included any electrical accessories.

The electrical data indicated in the technical bulletin and in the manual refer to the standard unit, accessories excluded. The matriculation plate shows the indications foreseen by the standards, in particular:

Valta va

- Voltage
- F.L.A.: full load ampere, absorbed current at maximum admitted conditions
- F.L.I.: full load input, full load power input at max. admissible condition
- Electrical wiringdiagram Nr.

6.2 Connections

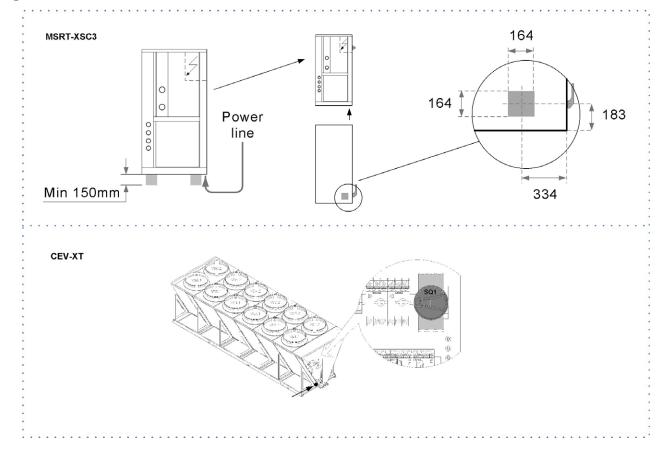
- 1. Refer to the unit electrical diagram (the number of the diagram is shown on the serial number label).
- 2. Verify that the electrical supply has characteristics conforming to the data shown on the serial number label.
- 3. Before starting work, ensure the unit is isolated, unable to be turned on and a safety sign used.
- 4. Ensure correct earth connection.
- 5. Ensure cables are suitably protected.
- 6. Before powering up the unit, make sure that all the protections that were removed during the electrical connection work have been restored.

6.3 Signals / data lines

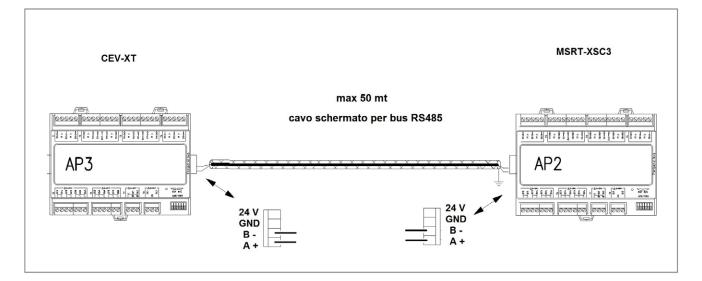
Do not exceed the maximum power allowed, which varies, according to the type of signal. Lay the cables far from power cables or cables having a different tension and that are able to emit electromagnetic disturbances. Do not lay the cable near devices which can generate electromagnetic interferences.

Do not lay the cables parallel to other cables, cable crossings are possible, only if laid at 90°.

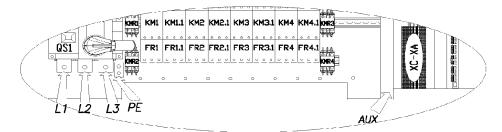
Connect the screen to the ground, only if there aren't disturbances.

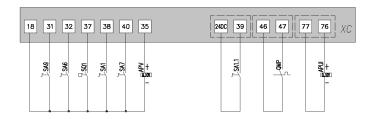

Guarantee the continuity of the screen during the entire extension of the cable.

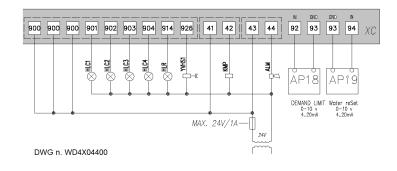
Respect impendency, capacity and attenuation indications.


6.4 **Power input**

- Fix the cables: if vacated may be subject to tearing.
- A Respect the minimum distance from the ground to allow the entry of the power line.


Note the compression of the compression of the refrigerant piping (they reach high temparatures).




6.5 Connections performer by customer

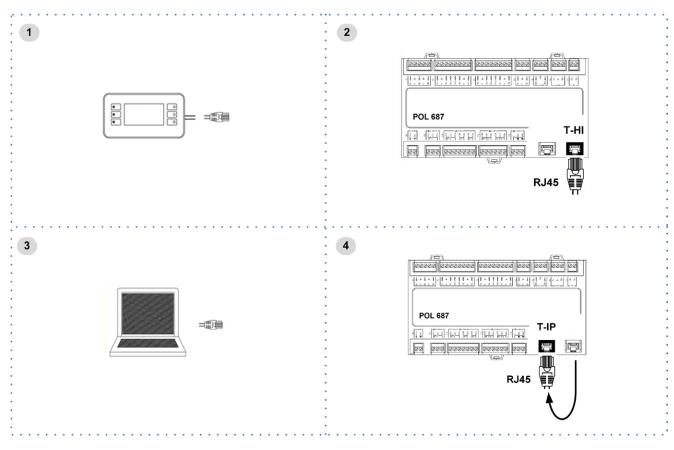
MSRT-XSC3

ALM	segnalazione biocco cumulativo cumulative fault signal signalisation alarme Sammelstörmeldung sefalización bloquéo cumulativo		SQ1	flussalato flow switch contrôleur de débit Strömungswächter flujostato
HLC1-HLC4	lampada di segnalazione stato compressore campressor status signal lamp lampe de signalisation état compresseur Signaliampe Verfaltzación estado compresor lámpara de serifalización estado compresor		QMP	interruttore automatico a protezione pompa ricircolo recirculation pump protection automatic device interrupteur automatique de protection pompe recirculation automaticher Schafterschutz der Umfultpumpe interruptar automatica de protección bando acticación
HLR	Lampada di segnalazione allarme resistenze quadra elettrico Alformi signali laringi resistance electrical paneli Signali di alforme dei resistance larme du cobinet Alformi Signallaringe Widerstand Schrank Señal de diama de la diama de resistenko del gabinete		KMP	contattore pompa di circolazione evaporatore evaporator pump contactor contacteur pompe de circulation évaporateur Schütz Kaltiwasserpumpe contactor bomba de circulación evaporador
SA1	selettore on/off remoto remote on/off selector sélecteur DN OFF déporté Fermunischdier Ein/Aus selector on/off remoto		apui	Inverter pompe lato utilizzo Inverter side pumps use Pompes cofte vargteur utilisation Wechselrichter-Seite Pumpen Einsatz Inverter bombas lado uso
SA1.1	selettore abilitazione secondo set-point second set-point enabling switch selecteur volladion deuxième consigne Wahlschalter /_Solwert selector habilitación segundo set-point		APV	usola analogica 0.10% da elettonica per gentione pelvelo/ventiliarione Free Cooling 0.10% analogical autori (ran electronica for valer/FRE-2028/K ventilarian analogement Serie analogica (L) % de electronica pera gestica canappe ventiliaria (FRE-2028/K Analogazagirá 0.10% de electronica para gestica relavity ventilica (FRE-2028/K Salida analogica C.10% de electronica para gestica relavity ventilica (FRE-2028/K)
SA6	seletlore richiesta acqua sanitaria sanitary water cycle selector sélecteur demande eau sanitaire Wahischalter der Brauchwasser selector solicitud agua sanitaria		AP18	demandlimit demandlimit demandlimit demandlimit demandlimit
SA7	selettore remoto "estate/inverno" remote winter/summer selector selecteur deporté effe /hver Fernwahlschälter Winter/Sommer " selector remoto veranoj invierno		AP19	Water reSet Water reSet Water reSet Water reSet Water reSet
SA9	termastato di richiesta raffreddamento cooling thermostat thermostat de demande refroidissement Thermostat Kühlbetneb termostato de solicitud refrigeración	,	YVHS1	valvala sanitaria sanitary valve Brauchventii Brauchventii dvluda sanitaria

6.6 Power supply cables section / power bars

Size	90.4	100.4	110.4	120.4	140.4	160.4	180.4
Min. cable section Cu (mm ²)	1x95	1x95	1x150	1x150	1x150	1x240	1x240
Max. cable section Cu (mm ²)	1x185	1x185	1x240	1x240	1x240	1x240	1x240
Min. bar Cu section (mm ²)	-	-	-	-	-	-	-
Max. bar Cu width (mm)	32	32	32	32	32	40	40
Tightening torque (Nm)	20	20	20	20	20	20	20

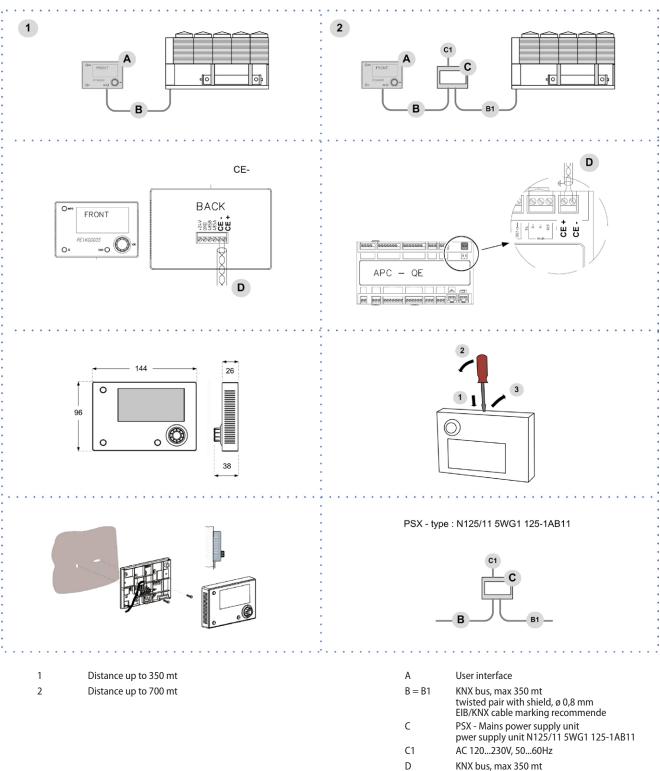
Size	200.4	220.4	240.4		
Min. cable section Cu (mm ²)	2x150	2x150	2x150		
Max. cable section Cu (mm ²)	2x300	2x300	2x300		
Min. bar Cu section (mm ²)	2 x 30 x 5	2 x 30 x 5	2 x 30 x 5		
Max. bar Cu width (mm)	50	50	50		
Tightening torque (Nm)	20	20	20		


6.7 Remote ON-OFF

O not perform short On Off cycles

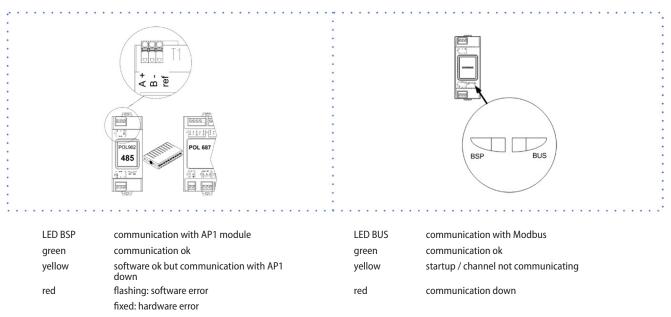
O Do not use the remote On Off with thermoregulation function.

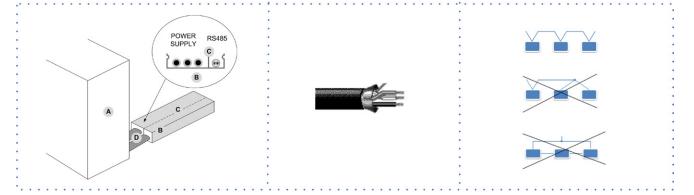
6.8 Computer connection


- 1. Service keypad
- 2. RJ45: standard connection
- 3. P.C.-not supplied
- 4. P.C. connection, shift RJ45 from T-HI to T-IP

Configure P.C.

- 1. connect P.C. and main module with LAN cable
- 2. check in the taskbar that the connection is active
- 3. open Control Panel and select Network and sharing center
- 4. select Modify board setting
- 5. select Local area connection (LAN)
- 6. select Internet protocol version 4 (TPC) IPV4 and enter Property
- 7. set the IP address 192.168.1.100
- 8. set Subnet mask as 255.255.255.0
- 9. confirm (OK)
- 10. enter Start (Windows button)
- 11. write the command cmd and enter/do it
- 12. write and run the command Ping 192.168.1.42
- 13. the message, connection is OK, will appear when successful
- 14. enter the browser (Crhome, Firefox ecc)
- 15. write and run the command http:/192.168.1.42
- 16. Userid = WEB
- 17. Password = SBTAdmin!


6.9 Remote control

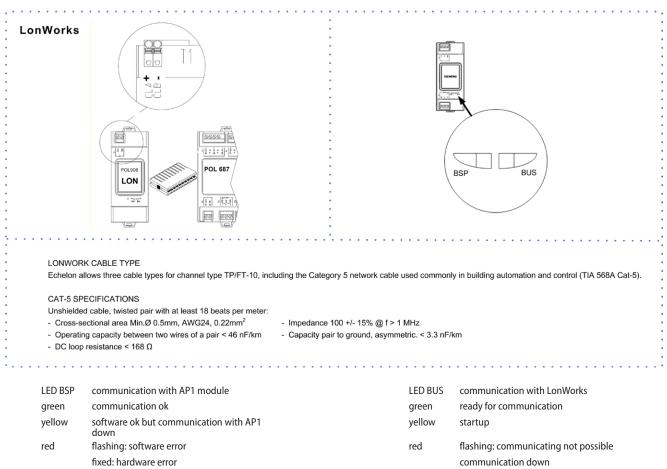


6.10 Modbus - RS485

Option

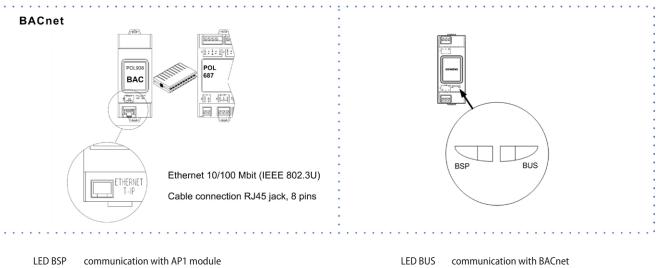
- A. Unit
- B. Metal conduit
- C. Metal septums
- D. Metal-lined sheath (sleeve)

Modbus / LonWorks / BACnet Cable requirements


Couple of conductors twisted and shielded Section of conductor 0,22mm2...0,35mm2 Rated power between conductors &It; 50 pF/m Nominal impedance 120 Ω

Recommended cable BELDEN 3106A

- Every RS485 serial line must be set up using the 'In/Out' bus system.
- Other types of networks are not allowed, such as Star or Ring networks.
- The difference in potential between the earth of the two RS485 devices that the cable shielding needs to be connected to must be lower than 7 V
- There must be suitable arresters to protect the serial lines from the effects of atmospheric discharges
- A 120 ohm resistance must be located on the end of the serial line. Alternatively, when the last serial board is equipped with an internal terminator, it must be enabled using the specific jumper, dip switch or link.
- The cable must have insulation features and non-flame propagation in accordance with applicable regulations.
- The RS485 serial line must be kept as far away as possible from sources of electromagnetic interference.


6.11 LonWorks

Option

6.12 BACnet IP

Option

LED DOP	communication with APT module
green	communication ok
yellow	software ok but communication with AP1 down
red	flashing: software error
	fixed: hardware error

ready for communication

BACnet server down restart after 3 sec

startup

green yellow

red

7 Start-up

7.1 General description

The indicated operations should be done by qualified technician with specific training on the product. The electrical, water connections and the other system works are by the installer.

Upon request, the service centres performing the start-up.

Agree upon in advance the star-up data with the service centre.

For details refer to the different manual sections.

Before checking, please verify the following:

- the unit should be installed properly and in conformity with this manual
- the electrical power supply line should be isolated at the beginning
- the unit isolator is open, locked and equipped with the suitable warning
- make sure no tension is present
- After turning off the power, wait at least 5 minutes before accessing to the electrical panel or any other electrical component.
- Before accessing check with a multimeter that there are no residual stresses.

7.2 Preliminary checks

Unit OFF power supply

- 1. safety access
- 2. Axitop installed, if provided
- 3. functional spaces
- 4. air flow: correct return and supply (no bypass, no stratification)
- 5. structure integrity
- 6. fans run freely
- 7. unit on vibration isolators
- 8. refrigerant line section
- 9. length of the refrigerant lines
- 10. siphon on the gas line every 6 meter back up
- 11. vacuum and additional charge
- 12. unit input water filter + shut-off valves for cleaning
- 13. vibration isolators on water connections
- 14. Minimum system water content
- 15. expansion tank (indicative volume = 5% system content)
- 16. cleaned system
- 17. loaded system + possible glycol solution + corrosion inhibitor
- 18. system under pressure
- 19. vented system
- 20. refrigerant circuit visual check
- 21. earthing connection
- 22. power supply features
- 23. electrical connections provided by the customer

7.3 Start-up sequence

Unit ON power supply

- 1. compressor crankcase heaters operating at least since 8 hours
- 2. off-load voltage measure
- 3. phase sequence check
- 4. pump manual start-up and flow check
- 5. shut-off valve refrigerant circuit open
- 6. unit ON
- 7. load voltage measure and absorptions
- 8. liquid sight glass check (no bubbles)
- 9. check all fan operating
- 10. measure return and supply water temperature
- 11. measure super-heating and sub-cooling
- 12. check no anomalous vibrations are present
- 13. climatic curve personalization
- 14. climatic curve personalization
- 15. scheduling personalization
- 16. complete and available unit documentation

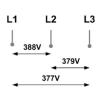
7.4 Refrigeration circuit

- 1. Check carefully the refrigerating circuit: the presence of oil stains can mean leakage caused by transportation, movements or other).
- 2. Verify that the refrigerating circuit is in pressure: Using the unit manometers, if present, or service manometers.
- 3. Make sure that all the service outlets are closed with proper caps; if caps are not present a leak of refrigerant can be possible.
- 4. Open the valves of the refrigerant circuit, if there are any.

7.5 Water circuit

- 1. Before realizing the unit connection make sure that the hydraulic system has been cleaned up and the cleaning water has been drained.
- 2. Check that the water circuit has been filled and pressurized.
- 3. Check that the shut-off valves in the circuit are in the "OPEN" position.
- 4. Check that there isn't air in the circuit, if required, evacuate it using the air bleed valve placed in the system high points.
- 5. When using antifreeze solutions, make sure the glycol percentage is suitable for the type of use envisaged.
- Neglecting the washing will lead to several filter cleaning interventions and at worst cases can cause damages to the exchangers and the other parts.

Weight of glycol (%)	10	20	30	40
Freezing temperature (°C)	-3.9	-8.9	-15.6	-23.4
Safety temperature (°C)	+1	-4	-10	-19


7.6 Electric Circuit

Verify that the unit is connected to the ground plant.

Check the conductors are tightened as: the vibrations caused by handling and transport might cause these to come loose. Connect the unit by closing the sectioning device, but leave it on OFF. Check the voltage and line frequency values which must be within the limits: 400/3/50 +/- 10%

Check and adjust the phase balance as necessary: it must be lower than 2%

Example

1)	$\frac{388+379+377}{3} = 381 \text{ (A)}$
2)	MAX - A = 388 - 381 = 7
3)	$S = \frac{7}{A}$ x 100 = 1,83 OK

Working outside of these limits can cause irreversible damages and voids the warranty.

7.7 Compressor crankcase heaters

Connect the oil resistances on the compressor crankcase at least 8 hours before the compressor is to be starter:

- at the first unit start-up
- after each prolonged period of inactivity
- 1. Supply the resistances switching off the unit isolator switch.
- 2. To make sure that heaters are working, check the power input.
- 3. At start-up the compressor crank-case temperature on the lower side must be higher at least of 10°C than the outside temperature.
- O Do not start the compressor with the crankcase oil below operating temperature.

7.8 Remote controls

Check that the remote controls (ON-OFF etc) are connected and, if necessary, enabled with the respective parameters as indicated in the "electrical connections" section.

Check that probes and optional components are connected and enabled with the respective parameters ("electrical connections" section and following pages).

7.9 Evaporator water flow-rate

Check that the difference between the temperature of exchanger return and supply water corresponds to power according to this formula: unit cooling power (kW) x 860 = Dt ($^{\circ}$ C) x flow rate (L/h)

The cooling power is shown in the table of the GENERAL TECHNICAL DATA included in this manual, referred to specific conditions, or in the tables on COOLING PERFORMANCE in the TECHNICAL BULLETIN referred to various conditions of use.

Check for water side exchanger pressure drops:

determine the water flow rate

measure the difference in pressure between exchanger input and output and compare it with the graph on WATER SIDE EXCHANGER PRESSURE DROPS

The measurement of pressure will be easier if pressure gauges are installed as indicated in the DIAGRAM OF SUGGESTED WATER CONNECTIONS.

7.10 Voltages

Check that the air and water temperatures are within in the operating limits.

Start-up the unit.

With unit operating in stable conditions, check:

- Voltage
- Total absorption of the unit
- Absorption of the single electric loads

7.11 Scroll compressor

The Scroll compressors have only one rotation direction.

In the event it is reversed, the compressor is not immediately damaged, but increases its noise and jeopardises pumping.

After a few minutes, the compressor blocks due to intervention of the thermal protection.

In this case, disconnect power supply and invert 2 phases on the machine power supply.

Avoid the compressor working for a long time with contrary rotation: more than 2-3 of these anomalous start-ups can damage it.

To ensure the rotation direction is correct, measure the condensation and suction pressure.

The pressures must significantly differ: upon start-up, the suction pressure decreases whereas the condensation one, increases.

7.12 Operating at reduced load

The units are equipped with partialization steps and they can, therefore, operate with reduced loads.

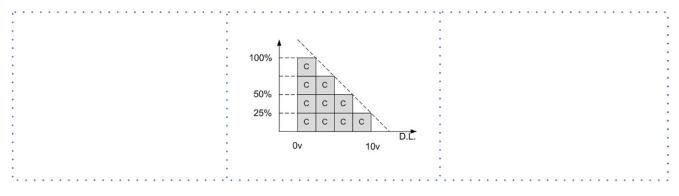
However a constant and long operation with reduced load with frequent stop and start-up of the compressor/s can cause serious damages for the lack of oil return.

The above-described operating conditions must be considered outside the operating limits.

In the event of compressor breakdown, due to operating in the above-mentioned conditions, the guarantee will not be valid and Clivet spa declines any responsibility.

Check periodically the average operating times and the frequency of the compressors starts: approximately the minimum thermal load should be such as to need the operating of a compressor for at least ten minutes.

If the average times are close to this limit, take the proper corrective actions.


7.13 Demand limit

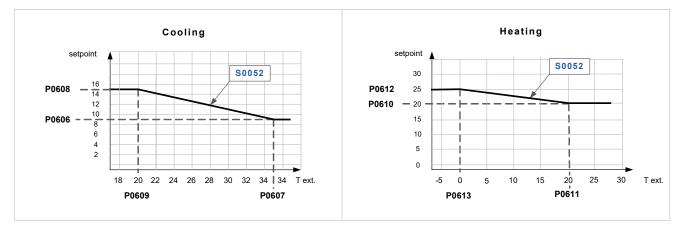
- Menu accessible only after having entered the password.
- Access reserved only to specifically trained personnel.
- $\underline{\ref{eq:linear}}$ The parameter modification can cause irreversible damages.

It is possible to limit the absorbed electric power with an external signal 0-10 Vcc.

The higher the signal is, the lower the number of compressors available to meet the thermal need. If only P0002: EnDemandLimit $\neq 0$

Path: Main Menu / Unit parameters / Demand limit

Step	Display	Action	Menu/Variable	Кеу	S	Notes
1		Press 3 sec.		\checkmark		
2	Password	Set	Password		\checkmark	
3		Press		i		
4	Main menu	Select	Unit parameters	\mathbf{v}	\checkmark	
5	Unit parameters	Select	Set Point	$\mathbf{\nabla}$	\checkmark	
6	Set Point	Select	Demand limit	$\mathbf{\nabla}$	\checkmark	
7		Set	Demand limit		$\mathbf{\nabla}$	
8		Confirm		\checkmark		
9		Press 3 sec.		۶ ۲		
10		Select	Local connections	\checkmark		


Path: Main Menu / Unit parameters / Demand limit

Parameters	Short description	description
P0200	setpointdemandlimit	Parameter setting of the value % of demand limit

7.14 Climatic TExt

- Menu accessible only after having entered the password.
- Access reserved only to specifically trained personnel.
- The parameter modification can cause irreversible damages.
 The setpoint defined by the temperature curve is shown at status S0052: ActualUtSetp
 Only if P0036: EnCompExt ≠ 0
 Path: Main Menu / Unit parameters / TExt Correction config

Example

Step	Display	Action	Menu/Variable	Ke	ys	Notes
1		Press 3 sec.		\checkmark		
2	Password	Set	Password		\checkmark	
3		Press		i		
4	Main menu	Select	Unit parameters	V	\checkmark	
5	Unit parameters	Select	Climatic TExt	V	\checkmark	
6	Climatic TExt (pwd)	Select	Parameter		\checkmark	
7		Set		V		
8		Confirm		\checkmark		
9		Press 3 sec.		¢[]		
10		Select	Local connections	V	\checkmark	

Path: Main Menu / Unit parameters / TExt Correction config

Parameters	Short description	description
P0606	CSptLow	setpoint temperature value when the air temperature value is AirAtSptLowC
P0607	AirAtSetPointLowC	external air temperature value where the calculated setpoint takes on the value given by CSptLow
P0608	CSptHigh	setpoint temperature value when the air temperature value is AirAtSptHigC
P0609	AirAtSetPointHighC	external air temperature value where the calculated setpoint takes on the value given by CSptHigh
P0610	HSptLow	setpoint temperature value when the air temperature value is AirAtSptLowH
P0611	AirAtSptLowH	external air temperature value where the calculated setpoint takes on the value given by HSptLow
P0612	HSptHigh	setpoint temperature value when the air temperature value is AirAtSptHigH
P0613	AirAtSptHigH	external air temperature value where the calculated setpoint takes on the value given by HSptHigh

P0606 / P0609: Coooling P0610 / P0613: Heating

7.15 Water reset

- Menu accessible only after having entered the password.
- \triangle Access reserved only to specifically trained personnel.

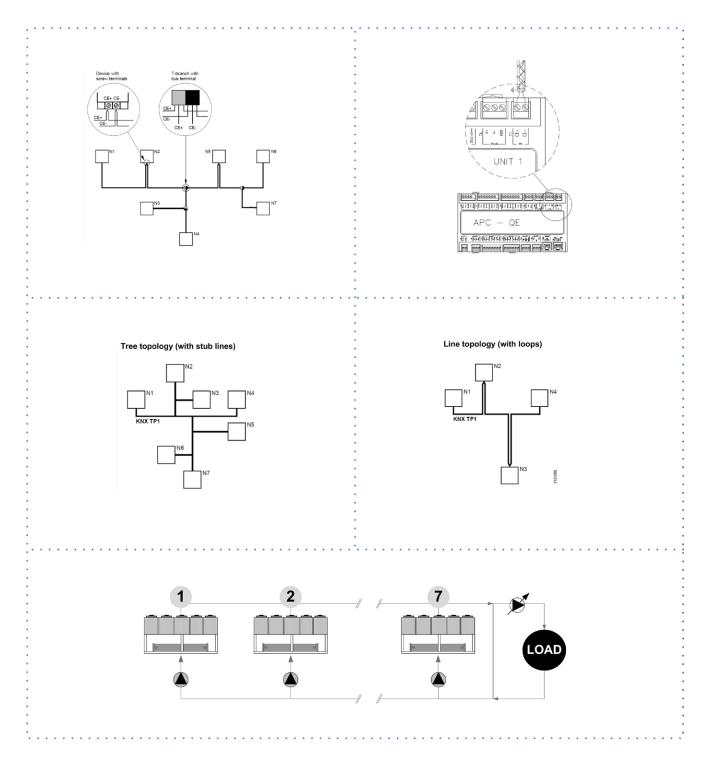
The parameter modification can cause irreversible damages. \triangle The water reset correction affects the setpoint defined by the Climate curve TExt (actual setpoint).

The setpoint is shown at status S0052: ActualUtSetp

Only if P0003: En WaterReset ≠ 0

Path: Main menu / Unit parameters / Water reset config

Step	Display	Action	Menu/Variable	Ke	ys	Notes
1		Press 3 sec.		\checkmark		
2	Password	Set	Password	\mathbf{v}	\checkmark	
3		Press		i		
4	Main menu	Select	Unit parameters	$\mathbf{\nabla}$	\checkmark	
5	Unit parameters	Select	Water reset	\mathbf{v}	\checkmark	
6	Water reset	Select	Parameter	\mathbf{v}	\checkmark	
7		Set		\mathbf{v}		
8		Confirm		\checkmark		
9		Press 3 sec.		۶ ۲		
10		Select	Local connections	\checkmark		


Path: Main Menu / Unit parameters / Water reset

Parameters	Short description	description
P0616	MaxCWRC	Maximum correction to be applied to the setpoint Cooling
P0617	SWRMaxC	Value of the WR control signal corresponding to the correction of the set Cool equal to P0616
P0618	SWRMinC	Value of the WR control signal corresponding to the correction of the set COOL equal to 0
P0615	MaxCWRH	Maximum correction to be applied to the setpoint Heating
P0619	SWRMaxH	Value of the WR control signal corresponding to the correction of the set Heating equal to P0615
P0620	SWRMinH	Value of the WR control signal corresponding to the correction of the set Heating equal to 0

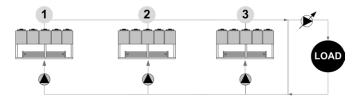
P0616 / P0618: Cooling P0615, P0619, P0620: Heating

7.16 ECOSHARE function for the automatic management of a group of units

- Max 7 units
- Maximum length of the bus line: 700 m.
- Maximum distance between 2 units: 300 m
- Type of cable: shielded twisted pair cable Ø 0,8 mm. use an EIB/KNX cable
- Possible connections: Tree, star, in/out bus, mixed
- It is not possible to use a ring connection
- No end-of-line resistor or terminator required
- There must be suitable arresters to protect the serial lines from the effects of atmospheric discharges
- The data line must be kept separate from the power conductors or powered at different voltage values and away from possible sources of electrical interference

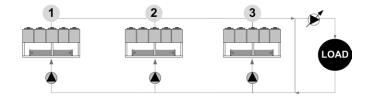
If there are more units connected in a local network set the mode of operation.

MODE A


Every unit manages its own compressors according to the setpoint. Every unit optimizes its refrigeration circuits.

Pumps always active, even with compressor stoped.

P0658 = 0


P0657 > 0 °C

setpoint1 > setpoint2 > setpoint3
or
setpoint1 < setpoint2 < setpoint3</pre>

MODE B

The master manages the single cooling. The master optimizes individual refrigerant circuits. Pumps always active, even with compressor stoped. P0658 = 1 P0657 = 0 °C setpoint1 = setpoint2 = setpoint3 plus: optimal H2O temperature control

	1	2	3	
MODE C The master manages the single cooling.	patan.			
The master optimizes individual refrigerant circuits.				LOAD
Active pumps only with active compressors.				
P0658 = 2				4
P0657 = 0 °C				
setpoint1 = setpoint2 = setpoint3				

plus: minimum pumps consumption need balanced system (t1 = t2 = t3)

Path: Main Menu / Unit parameters / Master Slave

Parameters	Short description	description
P0655	LNinstalledUnits	Number of network-connected units including the master
P0656	LNStandByUnits	Number of units kept in standby
P0657	LNOffset	Temperature Offset the master sum or subtract, depending on the way you set, in order of priority, to the set point of the slave
P0658	TypeRegMS	Operation mode: 0=mode A; 1=mode B; 2=mode C
P0659	LNAddress	ProcessBus address unit

7.17 Start-up report

Identifying the operating objective conditions is useful to control the unit over time.

- With unit at steady state, i.e. in stable and close-to-work conditions, identify the following data:
- total voltages and absorptions with unit at full load
- absorptions of the different electric loads (compressors, fans, pumps etc)
- temperatures and flows of the different fluids (water, air) both in input and in output from the unit
- temperature and pressures on the characteristic points of the refrigerating circuit (compressor discharge, liquid, intake)

The measurements must be kept and made available during maintenance interventions.

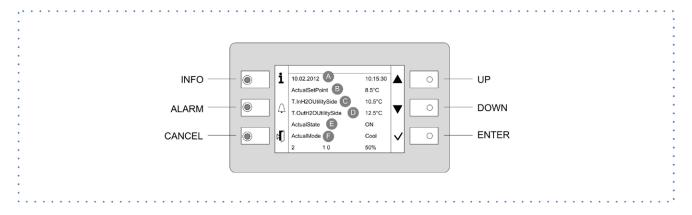
7.18 2014/68/UE PED directive

DIRECTIVE 2014/68/UE PED gives instructions for installers, users and maintenance technicians as well.

Refer to local regulations; briefly and as an example, see the following:

Compulsory verification of the first installation:

• only for units assembled on the installer's building site (for ex. Condensing circuit + direct expansion unit) Certification of setting in service:


• for all the units

Periodical verifications:

• to be executed with the frequency indicated by the Manufacturer (see the "maintenance inspections" paragraph)

8 Control

8.1 Led

INFO	Not used	
ALARM	Blink / fixed = alarm present	
CANCEL	not used currently	

(not used)

8.2 Display

Ref.	Variable	description
Α		Date - Time
В	ActualSetPoint	Temperature setting
C	T.InH20UtilitySide	Water inlet temperature utility side
D	T.OutH2OUtilitySide	Water outlet temperature utility side
E	ActualState	On / off / eco / pmp On
F	ActualMode	Cool: water cooling Heat: HEATING
	2	Installed compressors
	1-0	Compressors ON example: circuit 1 = 1 compr. On circuit 2 = 0 compr. On
	50%	Heating capacity

8.3 Keys

Symbol	Name	description
i	Info	Main menu
\bigtriangleup	Alarm	Alarm display
¢[]	Cancel	Exit Previous level Keyboard settings
	Up	Increases value
▼	Down	Decreases value
\checkmark	Enter	Confirm Password

8.4 Change unit state

Step	Display	Action	Menu/Variable	Keys		Notes
1		Press		i		
2	Main menu	Select	Cmd Local state	$\mathbf{\nabla}$	\checkmark	
3		Set	OFF - ECO - ON - Pump On		$\mathbf{\nabla}$	*
4		Confirm		\checkmark		
6		Exit		L I		

* Local state

ECO: recurrent pump ON-OFF; compressors keep water system at setpoint ECO Pmp ON: pump ON, compressor OFF

8.5 Change the mode

Step	Display	Action	Menu/Variable	Keys		Notes
1		Press		i		
2	Main menu	Select	Cmd Local mode	$\mathbf{\nabla}$	\checkmark	
3		Set	Cool: water cooling Heat: HEATING	$\mathbf{\nabla}$		
4		Confirm		\checkmark		
5		Exit				

8.6 Modify setpoint

Step	Display	Action	Menu/Variable	Keys		Notes
1		Press		i		
2	Main menu	Select	Unit parameters	$\mathbf{\nabla}$	\checkmark	
3	Unit parameters	Confirm	Set Point	\checkmark		
4		Select	Set Point	$\mathbf{\nabla}$	\checkmark	
5		Set	Set Point	$\mathbf{\nabla}$		
6		Confirm		\checkmark		
7		Exit		d i		

Parameters	Short description	description		
P0583	SetPointCooling	Setpoint Cool		
P0584	2SetPointCooling	2° Setpoint Cool	Enable by remote switch	
P0855	SetPointECOCooling	Economic summer SetPoint		
P0577	SetPointHeating	Setpoint Heat		
P0578	2SetPointHeating	2° Setpoint Heat		
P0579	SetPointECOHeating	Economic winter SetPoint		
P0640	SetPointRecover	Recovery Set Point		
P0580	ACSSetPoint	domestic hot water set point		

8.7 Scheduler

It is possible to set 6 events (Off, Eco, On, Recirculating) for each week day.

Step	Display	Action	Menu/Variable	Keys		Notes
1		Press		i		
2	Main menu	Select	Scheduler		\checkmark	
3	Scheduler	Select	Day	\mathbf{V}	\checkmark	
4		Select	Time	$\mathbf{\nabla}$	\checkmark	
5		Set	Event time		$\mathbf{\nabla}$	
6		Confirm		\checkmark		
7		Select	Value	$\mathbf{\nabla}$	\checkmark	
8		Set	On/Eco		V	
9		Confirm		\checkmark		
10		Exit		all.		

Enable Scheduler

Step	Display	Action	Menu/Variable	Keys		Notes
1		Press 3 sec.		\checkmark		
2	Password	Set	Password		\checkmark	
3		Press		i		*
4	Main menu	Select	Unit Parameters	$\mathbf{\nabla}$	\checkmark	
5		Select	Option config	$\mathbf{\nabla}$	\checkmark	
6		Set	P0052=1	\mathbf{v}	\checkmark	
7		Press 3 sec.		۲ ۱		
		Select	Local connections	▼	\checkmark	

* Unit Parameters menu is displayed

8.8 Display the status

Step	Display	Action	Menu/Variable	Keys		Notes
1		Press		i		
2	Main menu	Select	Machine State	$\mathbf{\nabla}$	\checkmark	
3		Select	General, circuit, ecc	V	\checkmark	
4		Exit		۶ ۱		

Nr.	GENERAL STATA
50	Current Mode
51	Current Status
52	Current Setpoint User-side
53	Steps Qty
54	Steps On
55	Current Setpoint Recovery
56	Alarms
57	Warning
58	Recovery Request
59	User-side Request
60	Domestic Hot Water Status
801	Recovery Pump 1 Hours
802	Recovery Pump 2 Hours
803	Recovery Pump 3 Hours
-	Bitmap Alarms 1
-	Bitmap Alarms 2
-	Bitmap Alarms 3
-	Bitmap Alarms 4

Nr.	USER-SIDE STATA
80	User-side Pump 1 Command
81	User-side Pump 2 Command
82	User-side Pump 3 Command
83	User-side Inverter Command
84	User-side Inverter Signal
85	User-side Inverter Reset
86	Pump On for Anti-freeze
87	Anti-freeze Heaters User side
88	User-side Flow Request
89	LimitFlow Heating
90	LimitFlow Recovery
91	LimitFlow Cooling
92	User-side Pump 1 Hours
93	User-side Pump 2 Hours
94	User-side Pump 3 Hours

Nr.	SOURCE STATA
70	Source Pump 1 Command
71	Source Pump 2 Command
72	Source Pump 2 Command
73	Source Inverter Command
74	Source Inverter Signal
75	Source Inverter Reset
1601	Source Pump 1.1 Hours
1602	Source Pump 2.1 Hours
1603	Source Pump 3.1 Hours
2601	Source Pump 1.2 Hours
2602	Source Pump 2.2 Hours
2603	Source Pump 3.2 Hours

Nr	CIRCUIT 1 STATA	
1001	Current Schema 1.1	
1002	SubCooling	
1003	Current capacity %	
1004	Pressure ratio	
1005	Envelope Zone 1.1	
1006	Envelope Zone 2.1	
1007	Envelope Zone 3.1	
1008	Offset Envelope 1.1	
1009	Superheat Set PID 3.1	
1100	Defrost Command 1.1	
1101	Superheat Set PID 1.1	
1102	Superheat Set PID 2.1	
1103	Number Compressors On	
1104	Compressor 1.1 Starts	
1105	Compressor 2.1 Starts	
1106	Compressor 3.1 Starts	
1107	Compressor 1.1 Hours	
1108	Compressor 2.1 Hours	
1109	Compressor 3.1 Hours	
-	EEV PID 1 controller status	
-	EEV PID 2 controller status	
-	EEV PID 3 controller status	
-	Source EEV 1	
-	Source EEV 2	
-	User-side EEV	
-	Bitmap Alarms 1.1	
-	Bitmap Alarms 2.1	
-	Bitmap Alarms 3.1	
-	Bitmap Alarms 4.1	

Nr.	DIGITAL INPUT
100	2nd Setpoint User-side
101	Recovery System Load
102	User-side System Load
103	Domestic Hot Water Request
104	Recovery Request
105	User-side Request
106	F.C. O. YV Cool
107	F.C. O. YV Heat
108	F.C. C. YV Cool
109	F.C. C. YV Heat
110	Free-cooling Flow
111	Recovery Flow
112	Source Flow
113	User-side Flow
114	Remote Heat/Cool
115	Remote On/Off
116	Phase Monitor
117	Free-cooling Pressure
118	Recovery Inverter Protection
119	Source Inverter Protection
120	User-side Inverter Protection
121	Free-cooling Pump 1 Protection
122	Recovery Pump 1 Protection
123	Source Pump 1 Protection
124	User-side Pump 1 Protection
125	Free-cooling Pump 2 Protection
126	Recovery Pump 2 Protection
127	User-side Pump 2 Protection
128	Free-cooling Pump 3 Protection
129	Recovery Pump 3 Protection
130	Source Pump 3 Protection
131	User-side Pump 3 Protection
132	Leak Detector
138	Source Pump 2 protection
139	Source System Load
1180	High Pressure 1.1
1181	Compressor 1.1 Protection
1182	Compressor 2.1 Protection
1184	Source Fan 1.1 Protection
2180	High Pressure 1.2
2181	Compressor 1.2 Protection
2183	Compressor 2.2 Protection
2184	Source Fan 1.2 Protection

Nr.	ANALOGIC INPUT
201	Demand Limit
202	User-side Differential Pressure switch
203	Free-cooling Water Temperature
204	External Air Temperature
205	Recovery In Temperature
206	Recovery Out Temperature
207	Cabinet Temperature
208	Water Reset
830	User-side In Temperature
831	User-side Out Temperature
885	Source In Temperature
886	Source Out Temperature
1201	Suction Pressure 1.1
1202	Suction Pressure 2.1
1203	Discharge Pressure 1.1
1204	Suction Temperature 1.1
1205	Suction Temp 2.1
1206	Suction Temperature 3.1
1207	Source In Temperature 1.1
1208	Recovery Liquid Temperature 1.1
1209	Source Out Temperature 1.1
1210	Discharge Temperature 1.1
1211	Discharge Temperature 2.1
2201	Suction Pressure 1.2
2202	Suction Pressure 2.2
2203	Discharge Pressure 1.2
2204	Suction Temperature 1.2
2205	Suction Temperature 2.2
2206	Suction Temperature 3.2
2207	Source In Temperature 1.2
2208	Recovery Liquid Temperature 1.2
2209	Source Out Temperature 1.2
2210	Discharge Temperature 1.2
2211	Discharge Temperature 2.2

Nr.	OUTPUT ANALOGICI
301	User-side YV Bypass
302	Grouped Alarms
303	Free-cooling Pump 1
304	Recovery Pump 1
305	Free-cooling Pump 2
306	Recovery Pump 2
307	Free-cooling Pump 3
308	Recovery Pump 3
309	Anti-freeze Heaters
310	Free-cooling Heaters
311	Cabinet Heating
312	Cabinet Fan
313	Domestic Hot Water Valve
314	Free-cooling Valve Open
315	Free-cooling Valve Close
318	YV 1 Cooling
319	YV 2 Heating
320	YV 3 Cooling
321	YV 4 Heating
1301	Aries / Defrost Injection 1.1
1302	Source Pump 1.1 Command
1303	Compressor 1.1 Command
1304	Compressor 2.1 Command
1305	Liquid Injection 1.1
1306	Liquid Injection 2.1
1307	RecValve Battery 1.1
1308	RecValve Chiller 1.1
1309	RecValve Recovery 1.1
1310	Reversing Cycle Valve 1.1
2301	Aries / Defrost Injection 1.2
2302	Source Pump 2.1 Command
2303	Compressor 1.2 Command
2304	Compressor 2.2 Command
2305	Liquid Injection 1.2
2306	Liquid Injection 2.2
2307	RecValve Battery 1.2
2308	RecValve Chiller 1.2
2309	RecValve Recovery 1.2
2310	Reversing Cycle Valve 1.2

Nr.	ANALOGIC OUTPUT	
401	Free-cooling Valve	
402	Recovery Pump Signal	
1401	Source Fan 1.1	
2401	Source Fan 1.2	

8.9 Keyboard settings

Step	Display	Action	Menu/Variable	Keys		Notes
1		Press 3 sec.		d I		
2		Press		\checkmark		
3	HMI Settings	Select		$\mathbf{\nabla}$	\checkmark	
4		Press		\checkmark	V	
5		Press		۲ ۱		
6		Select	Local connections	▼	\checkmark	

8.10 Alarms

Before resetting an alarm identify and remove its cause. Repeated resets can cause irreversible damage.

Example:

+ eE0001: Phase monitor: Fault = active alarm

- EE0003: Pum 1 faulty: Ok = resetted alarm

Display of alarm: step 1-3

Reset allarm: step 4-10

Step	Display	Action	Menu/Variable	Ке	ys	Notes
1		Press		\bigtriangleup		
2	Alarm list detail	Press		\bigtriangleup		
3	Alarm list	Select	Alarm	V	\checkmark	
4	Alarm list detail	Press 3 sec.		\checkmark		
5	Password	Set	Enter password	V	\checkmark	
6	Alarm list detail	Press		d.		
7	Alarm list	Select	Alarm		\checkmark	
8		Select	Reset Executed	V	\checkmark	
9		Press 3 sec.		d.		
10	Password management	Select	Log off	▼	\checkmark	

For details see: General list of alarms

8.11 General list of alarms

	ELECTRICAL CIRCUIT ALARMS							
Num	Name	Description	Category					
eE0001	Phase monitor	Phase monitor fault	Central					
EE0003	Pump 1 faulty	User side pump 1 overload protection	GP Ut					
EE0004	Pump 2 faulty	User side pump 2 overload protection	GP Ut					
EE0005	Pump 3 faulty	User side pump 3 overload protection	GP Ut					
eE0008	Utility Inverter Protection	User side inverter overload protection	GP Ut					
ee0010	Master Offline	Master unit offline	MS					
ee0011	Unit 2 in alarm	2 nd slave unit fault	MS					
ee0012	Unit 2 OffLine	2 nd slave unit offline	MS					
ee0013	Unit 3 in alarm	3 rd slave unit fault	MS					
ee0014	Unit 3 OffLine	3 rd slave unit offline	MS					
ee0015	Unit 4 in alarm	4 th slave unit fault	MS					
ee0016	Unit 4 OffLine	4 th slave unit offline	MS					
ee0017	Unit 5 in alarm	5 th slave unit fault	MS					
ee0018	Unit 5 OffLine	5 th slave unit offline	MS					
ee0019	Unit 6 in alarm	6 th slave unit fault	MS					
ee0020	Unit 6 OffLine	6 th slave unit offline	MS					
ee0021	Unit 7 in alarm	7 th slave unit fault	MS					
ee0022	Unit 7 OffLine	7 th slave unit offline	MS					
ee0027	Utility Water In temp Error	User side in water temperature probe fault	Central					
ee0028	Utility Water Out temp Error	User side out water temperature probe fault	Central					
ee0029	Temp Ext Sensor Error	External air temperature probe fault	HW					
ee0030	DemandLimit	Demand limit fault	HW					
ee0031	WaterReset	Water reset fault	HW					
ee0032	External Humidity probe Error	Relative humidity probe fault	HW					
ee0033	T.Quadro Ele	Electrical panel temperature probe fault	HW					
ee0035	YV Cool Open	YV Cool opening fault	4P					
ee0036	YV Heat Open	YV Heat opening fault	4P					
ee0037	YV Cool Close	YV Cool closing fault	4P					
ee0038	YV Heat Close	YV Heat closing fault	4P					
ee0040	FCI Water Temp.	Freecoling water temperature probe fault	HW FCI					
EE0044	Pump 1 Allarm	Freecooling pump 1 overload protection	FCI Circuit 1					
EE0045	Pump 2 Allarm	Freecooling pump 2 overload protection	FCI Circuit 1					
EE0046	Pump 3 Allarm	Freecooling pump 3 overload protection	FCI Circuit 1					
ee0047	Pump Change for Utility Flow	Switching pump on user side for flow alarm	GP User side					
ee0050	P.DifferenzialeUtil	User side differential pressure sensore fault	HW					
EE0054	Recovery Pump 1 protection	Recovery side pump 1 overload protection	Recovery					
EE0055	Recovery Pump 2 protection	Recovery side pump 2 overload protection	Recovery					
EE0056	Recovery Pump 3 protection	Recovery side pump 3 overload protection	Recovery					
eE0057	Recovery Inverter Protection	Recovery side inverter overload protection	Recovery					
ee0100	TimeOutModPOL98U	1 st POL98U module disconnected	HW TimeOut					
ee0101	TimeOutModPOL98U_2	2 nd POL98U module disconnected	HW TimeOut					
ee0102	TimeOutModPOL96U	POL96U module disconnected	HW TimeOut					
ee0103	TimeOutModPOL945	POL945 module disconnected	HW TimeOut					

ELECTRICAL CIRCUIT ALARMS							
Num	Name	Description	Category				
ee0104	TimeOutModPOL965	POL965 module disconnected	HW TimeOut				
ee0105	TimeOutModPOL94U	1 st POL94U module disconnected	HW TimeOut				
ee0106	TimeOutModPOL94U_2	2 nd POL94U module disconnected	HW TimeOut				
ee0107	TimeOutModPOL985	POL985 module disconnected	HW TimeOut				
ee1001	T.Suction Gas	Gas temperature probe 3 fault	HW Circuit 1				
ee1002	T.Suction Gas	Gas temperature probe 5 fault	HW Circuit 1				
ee1003	P.Suction Heat	Pressure sensor fault, low pressure heating	HW Circuit 1				
ee1004	EEV1 blocked	EEV 1 blocked	Circuit 1				
ee1005	EEV1 blocked	EEV2 blocked	Circuit 1				
EE1006	Comp 1 protections	Compressor 1 overload protection	Circuit 1				
EE1007	Comp 2 protections	Compressor 2 overload protection	Circuit 1				
EE1008	Comp 3 protections	Compressor 3 overload protection	Circuit 1				
EE1009	Source Inverter Protection	Source side inverter overload protection	Source 1				
ee1010	Pump Change for Source Flow	Switching pump on source side for flow alarm	Source 1				
EE1013	Source Pump 1 protection	Source side pump 1 overload protection	Source 1				
EE1014	Source Pump 2 protection	Source side pump 2 overload protection	Source 1				
EE1015	Source Pump 3 protection	Source side pump 3 overload protection	Source 1				
EE1018	Source side protection	Source side ventilation overload protection	Circuit 1				
ee1022	T.Discharge C1.1	Compressor 1 discharge temperature probe fault	HW Circuit 1				
ee1023	T.Discharge C2.1	Compressor 2 discharge temperature probe fault	HW Circuit 1				
ee1024	T.Discharge C3.1	Compressor 3 discharge temperature probe fault	HW Circuit 1				
ee1025	T.Source 1	Source 1 temperature probe fault	HW Circuit 1				
ee1026	T.Source 2	Source 2 temperature probe fault	HW Circuit 1				
ee1027	T.Suction Gas	Suction temperature probe fault	HW Circuit 1				
ee1028	P.Discharge	High pressure probe fault	HW Circuit 1				
ee1029	P.Suction	Low pressure probe fault	HW Circuit 1				
ee1030	T.GasRecovery	Recovery exchanger gas temperature probe fault	HW Circuit 1				
ee1031	P.GasRecovery	Recovery exchanger gas pressure probe fault	HW Circuit 1				
ee1032	T.Ing Recovery	Recovery in temperature probe fault	HW Circuit 1				
ee1033	T.Out Recovery	Recovery out temperature probe fault	HW Circuit 1				
ee1037	Alarm Inverter 1	Inverter 1 in alarm	Inverter APY				
ee1038	Alarm missing comunication inv1	Inverter 1 Modbus communication error	Inverter APY				
ee1039	Timeout comunication inv1	Inverter 1 communication timeout	Inverter APY				
ee1040	Alarm Inverter 2	Inverter 2 in alarm	Inverter APY				
ee1041	Alarm missing comunication inv2	Inverter 2 Modbus communication error	Inverter APY				
ee1042	Timeout comunication inv2	Inverter 2 communication timeout	Inverter APY				
ee1043	Alarm Inverter 3	Inverter 3 in alarm	Inverter APY				
ee1044	Alarm missing comunication inv3	Inverter 3 Modbus communication error	Inverter APY				
ee1045	Timeout comunication inv3	Inverter 3 communication timeout	Inverter APY				
EE1047	Alarm Envelop Comp1	Compressor 1 envelope alarm	Circuit 1				
EE1048	Alarm Envelop Comp2	Compressor 2 envelope alarm	Circuit 1				
EE1049	Alarm Envelop Comp3	Compressor 3 envelope alarm	Circuit 1				
ee1055	Alarm Inverter 1	Inverter 1 in alarm	Inverter DFS				
ee1056	Alarm missing comunication inv1	Inverter 1 Modbus communication error	Inverter DFS				
ee1057	Timeout comunication inv1	Inverter 1 communication timeout	Inverter DFS				

	ELECTRIC	AL CIRCUIT ALARMS	
Num	Name	Description	Category
ee1058	Alarm Inverter 2	Inverter 2 in alarm	Inverter DFS
ee1059	Alarm missing comunication inv2	Inverter 2 Modbus communication error	Inverter DFS
ee1060	Timeout comunication inv2	Inverter 2 communication timeout	Inverter DFS
ee1061	Alarm Inverter 3	Inverter 3 in alarm	Inverter DFS
ee1062	Alarm missing comunication inv3	Inverter 3 Modbus communication error	Inverter DFS
ee1063	Timeout comunication inv3	Inverter 3 communication timeout	Inverter DFS
ee1070	User side ECV 1.1	User side ECV connection problem	HW Circuit 1
ee1071	Source ECV 1.1	Source side ECV 1 connection problem	HW Circuit 1
ee1072	Source ECV 2.1	Source side ECV 2 connection problem	HW Circuit 1
ee2001	T.Suction Gas	Gas temperature probe 4 fault	HW Circuit 2
ee2002	T.Suction Gas	Gas temperature probe 6 fault	HW Circuit 2
ee2003	P.Suction Heat	Pressure sensor fault, low pressure heating	HW Circuit 2
ee2004	EEV1 blocked	EEV1 blocked	Circuit 2
ee2005	EEV1 blocked	EEV2 blocked	Circuit 2
EE2006	Comp 1 protections	Compressor 1 overload protection	Circuit 2
EE2007	Comp 2 protections	Compressor 2 overload protection	Circuit 2
EE2008	Comp 3 protections	Compressor 3 overload protection	Circuit 2
EE2009	Source Inverter Protection	Source side inverter overload protection	Source 2
ee2010	Pump Change for Source Flow	Switching pump on source side for flow alarm	Source 2
EE2013	Source Pump 1 protection	Source side pump 1 overload protection	Source 2
EE2014	Source Pump 2 protection	Source side pump 2 overload protection	Source 2
EE2015	Source Pump 3 protection	Source side pump 3 overload protection	Source 2
EE2018	Source side protection	Source side ventilation overload protection	Circuit 2
ee2022	T.Discharge C1.1	Compressor 1 discharge temperature probe fault	HW Circuit 2
ee2023	T.Discharge C2.1	Compressor 2 discharge temperature probe fault	HW Circuit 2
ee2024	T.Discharge C3.1	Compressor 3 discharge temperature probe fault	HW Circuit 2
ee2025	T.Source 1	Source 1 temperature probe fault	HW Circuit 2
ee2026	T.Source 2	Source 2 temperature probe fault	HW Circuit 2
ee2027	T.Suction Gas	Suction gas temperature probe fault	HW Circuit 2
ee2028	P.Discharge	High pressure probe fault	HW Circuit 2
ee2029	P.Suction	Low pressure probe fault	HW Circuit 2
ee2030	T.GasRecovery	Recovery exchanger gas temperature probe fault	HW Circuit 2
ee2031	P.GasRecovery	Recovery exchanger gas pressure probe fault	HW Circuit 2
ee2032	T.Ing Recovery	Recovery in temperature probe fault	HW Circuit 2
ee2033	T.Out Recovery	Recovery out temperature probe fault	HW Circuit 2
ee2037	Alarm Inverter 1	Inverter 1 in alarm	Inverter APY
ee2038	Alarm missing comunication inv1	Inverter 1 Modbus communication error	Inverter APY
ee2039	Timeout comunication inv1	Inverter 1 communication timeout	Inverter APY
ee2040	Alarm Inverter 2	Inverter 2 in alarm	Inverter APY
ee2041	Alarm missing comunication inv2	Inverter 2 Modbus communication error	Inverter APY
ee2042	Timeout comunication inv2	Inverter 2 communication timeout	Inverter APY

-

	ELECTRICAL CIRCUIT ALARMS								
Num	Name	Description	Category						
ee2043	Alarm Inverter 3	Inverter 3 in alarm	Inverter APY						
ee2044	Alarm missing comunication inv3	Inverter 3 Modbus communication error	Inverter APY						
ee2045	Timeout comunication inv3	Inverter 3 communication timeout	Inverter APY						
EE2047	Alarm Envelop Comp1	Compressor 1 envelope alarm	Circuit 2						
EE2048	Alarm Envelop Comp2	Compressor 2 envelope alarm	Circuit 2						
EE2049	Alarm Envelop Comp3	Compressor 3 envelope alarm	Circuit 2						
ee2055	Alarm Inverter 1	Inverter 1 in alarm	Inverter DFS						
ee2056	Alarm missing comunication inv1	Inverter 1 Modbus communication error	Inverter DFS						
ee2057	Timeout comunication inv1	Inverter 1 communication timeout	Inverter DFS						
ee2058	Alarm Inverter 2	Inverter 2 in alarm	Inverter DFS						
ee2059	Alarm missing comunication inv2	Inverter 2 Modbus communication error	Inverter DFS						
ee2060	Timeout comunication inv2	Inverter 2 communication timeout	Inverter DFS						
ee2061	Alarm Inverter 3	Inverter 3 in alarm	Inverter DFS						
ee2062	Alarm missing comunication inv3	Inverter 3 Modbus communication error	Inverter DFS						
ee2063	Timeout comunication inv3	Inverter 3 communication timeout	Inverter DFS						
ee2070	User side ECV 1.1	User side ECV connection problem	HW Circuit 2						
ee2071	Source ECV 1.1	Source side ECV 1 connection problem	HW Circuit 2						
ee2072	Source ECV 2.1	Source side ECV 2 connection problem	HW Circuit 2						

	REFRIGERANT CIRCUIT ALARMS								
Num	Name	Description	Category						
ff1005	Min overheating EEV1	Value of refrigerant superheat too low EEV1 (user side)							
ff1006	Min overheating EEV2	Value of refrigerant superheat too low EEV1 (source) Circuit							
fF1009	Low Pressure Alarm (DI)	Low Pressure Alarm (DI)	Circuit 1						
ff1010	Warning LP Cool	Low Pressure Pre Alarm in Cooling Mode	Circuit 1						
ff1011	Warning LP Heat	Circuit 1							
fF1012	Low pressure Alarm Heat (AI)	Low Pressure in Heating Mode (AI)	Circuit 1						
fF1013	High Pressure (DI)	High Pressure Alarm (DI)	Circuit 1						
ff1014	Warning High Pressure	High Pressure Pre Alarm	Circuit 1						
fF1015	High Pressure Alarm (AI)	High Pressure Alarm (AI)	Circuit 1						
ff1016	Max RC Warning	Maximum Pressure Ratio Pre Alarm	Circuit 1						
fF1017	Min RC Alarm	Minimum Pressure Ratio Pre Alarm	Circuit 1						
fF1018	Low Pressure Alarm Cool(AI)	Low Pressure Alarm in Cooling Mode	Circuit 1						
FF1019	Max RC Alarm	Maximum Pressure Ratio	Circuit 1						
FF1034	Vacuum Circuit	Vaacum Alarm	Circuit 1						
FF1046	LimLp	Low pressure limit	Circuit 1						
ff1047	DFRForced	Defrost Forced	Circuit 1						
ff1048	DFRWaterTLow	Low water temperature for defrost operation	Circuit 1						
ff1049	DFRTimeMax	Defrost Maximum Time	Circuit 1						

	R EFRIGERANT CIRCUIT ALARMS								
Num	Name	Description	Category						
ff2005	Min overheating EEV1	Min Superheat value (user side)	Circuit 2						
ff2006	Min overheating EEV2	Min Superheat value (source)	Circuit 2						
fF2009	Low Pressure Alarm (DI)	Low pressure Alarm (DI)	Circuit 2						
ff2010	Warning LP Cool	Low pressure Pre Alarm CoolingMode							
ff2011	Warning LP Heat Low pressure Pre Alarm HeatingMode								
fF2012	Low pressure Alarm Heat (AI)	Circuit 2							
fF2013	High Pressure (DI)	High pressure Alarm (DI)	Circuit 2						
ff2014	Warning High Pressure	High pressure Pre Alarm	Circuit 2						
fF2015	High Pressure Alarm (AI)	High pressure Alarm (AI)	Circuit 2						
ff2016	Max RC Warning	Maximum pressure Ratio Pre Alarm	Circuit 2						
fF2017	Min RC Alarm	Minimum pressure Ratio Pre Alarm	Circuit 2						
fF2018	Low Pressure Alarm Cool(Al)	Low Pressure Alarm Cooling Mode	Circuit 2						
FF2019	Max RC Alarm	Maximum Pressure Radio	Circuit 2						
FF2034	Vacuum Circuit	Vaacum Alarm	Circuit 2						
FF2046	LimLp	Low pressure limit	Circuit 2						
ff2047	DFRForced	Defrost Forced	Circuit 2						
ff2048	DFRWaterTLow	Low water temperature for defrost	Circuit 2						
ff2049	DFRTimeMax	Defrost Time	Circuit 2						

	HYDRAULIC CIRCUIT ALARMS								
Num	Name	Description	Category						
i10002	Water pressure	User side low water pressure	GP Ut						
i10006	Flow switch utility side	User side low flow rate	GP Ut						
110007	Freeze alarm	User side Water Frost Protection	Centrale						
ii0008	Pumps antifreeze alarm	Pump activation Water Frost Protection	Centrale						
110009	Inconsistent deltaT across the exchanger	Water outlet temperature, discordant with the current operation mode, user side	Centrale						
110042	Pressure allarm	Freecooling low water pressure	FCI Circuito 1						
110043	Freeze alarm	Freecooling water frost protection	FCI Circuito 1						
ii0047	Flow switch allarm	Freecooling water low flow rate	FCI Circuito 1						
i10052	Recovery Low H2O Flow	Recovery water low flow rate	Recupero						
i10053	Recovery Low Pressure Plant	Recovery low water pressure	Recupero						
il1017	Source Low Pressure Plant	Source low water pressure	Sorgente 1						
iI1020	Source Low H2O Flow	Source side low water flow	Sorgente 1						
II1021	Source H2O Freeze Alarm	Source side water frost protection	Sorgente 1						
il2017	Source Low Pressure Plant	Source low water pressure	Sorgente 2						
il2020	Source Low H2O Flow	Source side low water flow	Sorgente 2						
II2021	Source H2O Freeze Alarm	Source side water frost protection	Sorgente 2						

9 Maintenance

9.1 General description

Maintenance must be done by authorized centres or by qualified personnel. The maintenance allows to:

- maintain the unit efficiency
- increase the life span of the equipment
- assemble information and data to understand the state of the unit efficiency and avoid possible damages

Before checking, please verify the following:

- the electrical power supply line should be isolated at the beginning
- the unit isolator is open, locked and equipped with the suitable warning
- make sure no tension is present
- After turning off the power, wait at least 5 minutes before accessing to the electrical panel or any other electrical component.
- Before accessing check with a multimeter that there are no residual stresses.

9.2 Inspections frequency

 \triangle

Perform an inspection every 6 months minimum. The frequency, however, depends on the use.

- In the event of frequent use it is recommended to plan inspections at shorter intervals:
- frequent use (continuous or very intermittent use, near the operating limits, etc)
- critical use (service necessary)

√	intervention frequency (months)	1	6	12
1	presence corrosion			Х
2	panel fixing			Х
3	fan fixing		Х	
4	coil cleaning		Х	
5	water filter cleaning		Х	
6	water: quality, ph, weight of glycol (%)		Х	
7	check the exchanger efficiency			Х
8	circulating pumps		Х	
9	check of the fixing and the insulation of the power lead			Х
10	check of the earthing cable			Х
11	electric panel cleaning			Х
12	capacity contactor status			Х
13	termina closing, cable insulation integrity			Х
14	voltage and phase unbalancing (no load and on-load)		Х	
15	absorptions of the single electrical loads		Х	
16	test of the compressor crankcase heaters		Х	
17	Checking for leaks			*
18	survey of the refrigerant circuit operating parameters		Х	
19	safety valve			*
20	protective device test: pressure switches, thermostats, flow switches etc		Х	
21	control system test: setpoint, climatic compensations, capacity stepping, water / air flow-rate variations		Х	
22	control device test: alarm signalling, thermometers, probes, pressure gauges etc		Х	

* Refer to the local regulations; and ensure correct adherance. Companies and technicians that effect interventions of installation, maintenance/repairs, leak control and recovery must be CERTIFIED as expected by the local regulations. The leak control must be effected with annual renewal.

9.3 Unit booklet

It's advisable to create a unit booklet to take notes of the unit interventions. In this way it will be easier to adequately note the various interventions and aid any troubleshooting. Report on the booklet:

- date
- intervention description
- carried out measures etc.

9.4 Standby mode

If a long period of inactivity is foreseen:

- turn off the power
- avoid the risk of frost (empty the system or add glycol)
- Turn off the power to avoid electrical risks or damages by lightning strikes.
- With lower temperatures keep heaters turned on in of the electrical panel (option).

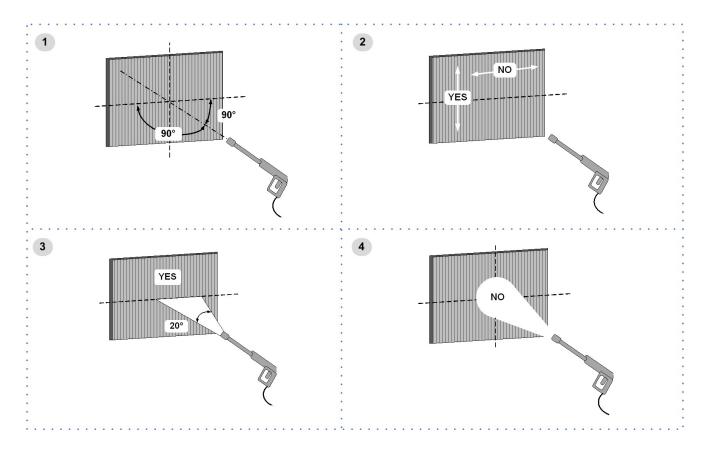
It's recommended that the re-start after the stopping period is performed by a qualified technician, especially after seasonal stops or seasonal switching.

When restarting, refer to what is indicated in the "start-up" section.

Schedule technical assistance in advance to avoid hitches and to guarantee that the system can be used when required.

9.5 Air coil

Contact with the exchanger fins can cause cuts: wear protective gloves to perform the above described operations.


It is extremely important that the battery gives the maximum thermal exchange; therefore, its surface must be cleaned from dust and deposits. Remove all impurities from the surface.

Using an air pressure gun, clean the aluminum surface of the battery; be careful to direct the air in the opposite direction of the fan air movement.

Hold the gun parallel to the fins to avoid damages.

As an alternative, vacumn cleaner can be used to suck impurities from the air input side.

Verify that the aluminum fins are not bent or damaged, in the event of damages contact the authorized assistance center and get the fins straightened in order to restore the initial condition for an optimal air flow.

9.6 Electric fans

Check:

- the fans and the relative protection gridsare well fixed
- the fan bearings (evident by noise and anomalous vibrations)
- the terminal protection covers are closed and the cable holders are properly positioned

9.7 Water side exchanger

It is very important for the exchanger to be able to provide the maximum thermal exchange, therefore it is essential for the inner surfaces to be clean of dirt and incrustations.

Periodically check the difference between the temperature of the supply water and the condensation temperature: if the difference is greater than $8^{\circ}C-10^{\circ}C$ it is advisable to clean the exchanger.

The clearing must be effected:

- with circulation opposite to the usual one
- with a speed at least 1,5 times higher than the nominal one
- with an appropriate product moderately acid (95% water + 5% phosphoric acid)
- after the cleaning rinse with water to inhibit the action of any residual product

9.8 Water filter

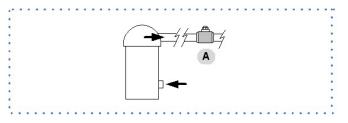
Check that no impurities prevent the correct passage of water.

9.9 Circulating pumps

Check:

- no leaks
- bearing status (anomalies are highlighted by abnormal noise and vibration)
- the terminal protection covers are closed and the cable holders are properly positioned

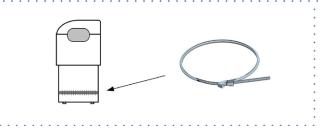
9.10 Flow Switch

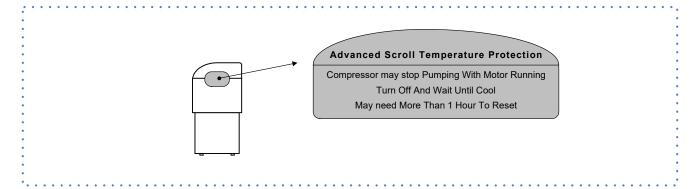

- controls the operations
- remove incrustations from the palette

9.11 Insulations

Check the condition of the insulations: if necessary apply glue and and renew the seals.

9.12 Compressor supply line shut-off valve


Do not remove the seal Remove only if authorized by the manufacturer. Please contact the maker for informations.


9.13 crankcase heather

Check:

- closure
- Operation

9.14 Copeland scroll compressor

9.15 System discharge

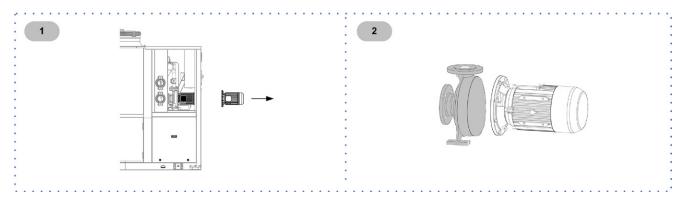
- 1. evacuate the system
- 2. evacuate the exchanger, use all the present taps
- 3. use compressed air to blow the exchanger
- 4. dry completely the exchanger by an hot air jet; for greater safety fill the exchanger with glycoled solution
- 5. protect the exchanger from the air
- 6. remove the drain plugs to the pumps
- Any anti-freeze liquid contained in the system should not be discharged freely as it is a pollutant.

It must be collected and reused.

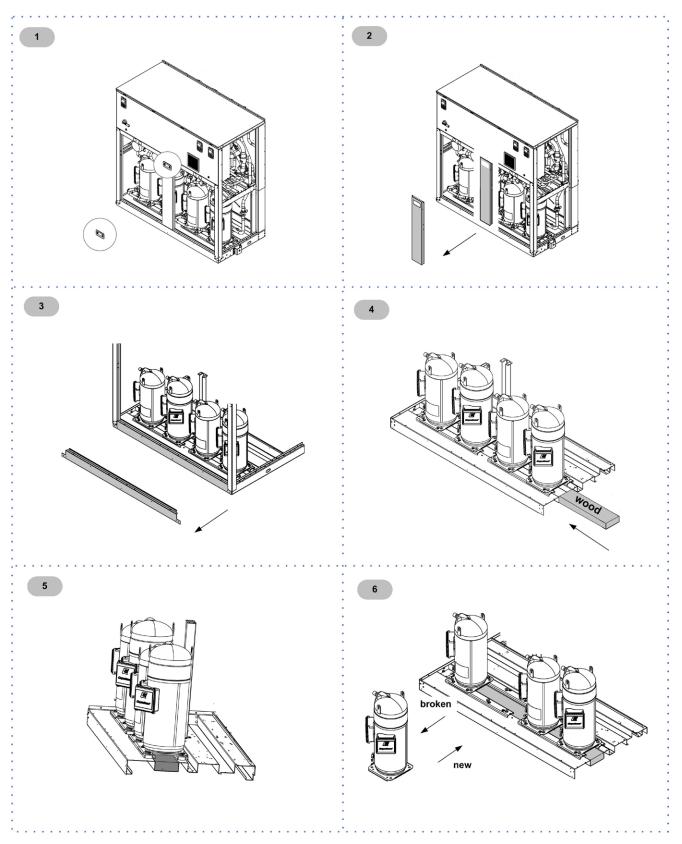
Before starting a washing the plant.

Example

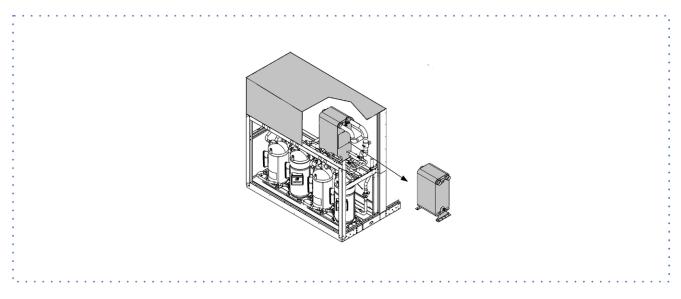
emptying pump


	•••••••••••••••••	
•		
:		

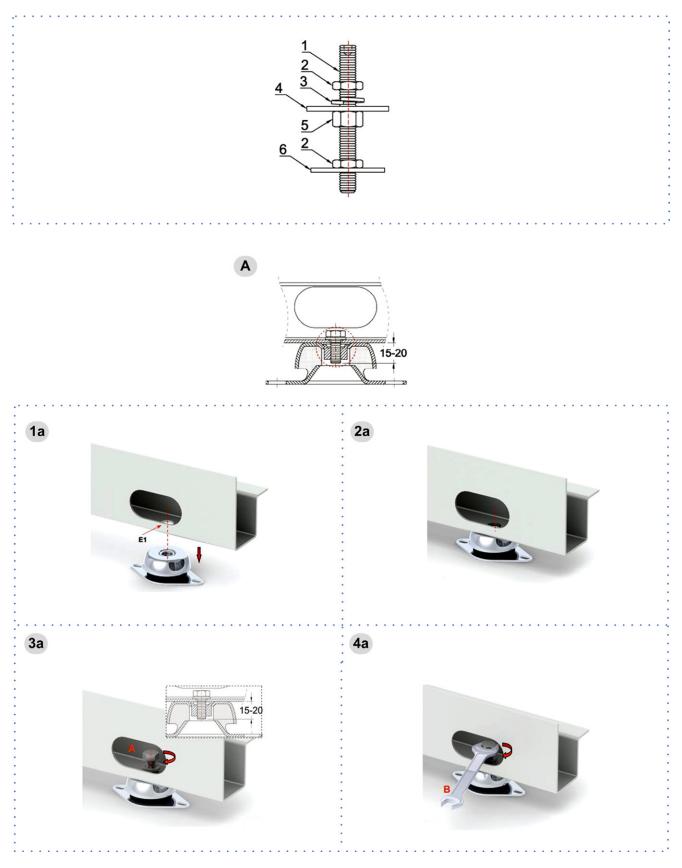
It's recommended that the re-start after the stopping period is performed by a qualified technician, especially after seasonal stops or seasonal switching.

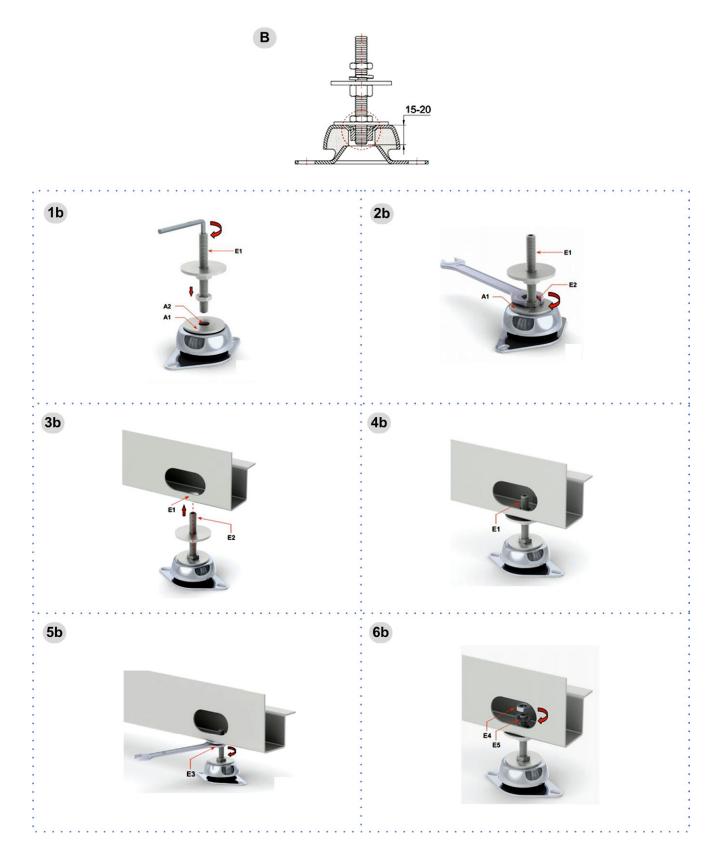

When restarting, refer to what is indicated in the "start-up" section.

Schedule technical assistance in advance to avoid hitches and to guarantee that the system can be used when required.


9.16 Pump replacement

9.17 Compressor replacement




9.18 Exchanger replacement

10 Accessories

10.1 Anti-vibration mount support

11 Decommissioning

11.1 Disconnecting

Only authorised personnel must disconnect the unit.

Avoid leak or spills into the environment.

Before disconnecting the unit, the following must be recovered, if present:

- refrigerant gas
- anti-freeze solutions in the water circuit

Awaiting dismantling and disposal, the unit can also be stored outdoors, if the electrical, cooling and water circuits of the unit have 100% integrity and are isolated, bad weather and rapid change in temperature will not result in any environmental impact.

11.2 Dismantling and disposal

The unit must always be sent to authorised centres for dismantling and disposal.

When dismantling the unit, the fan, the motor and the coil, if operating, may be recovered by the specialist centres for reuse.

All the materials must be recovered or disposed of in compliance with the corresponding national standards in force.

For further information on the decommissioning of the unit, contact the manufacturer.

11.3 Directive EC RAEE

The units covered by the legislation in question are marked with the symbol on the side.

With the aim of protecting the environment, all of our units are produced in compliance with Directive EC on waste electrical and electronic equipment (RAEE).

The potential effects on the environment and on human health due to the presence of hazardous substances are shown in the use and maintenance manual in the section on residual risks.

Information in addition to that indicated below, if required, can be obtained from the manufacturer/distributor/importer, who are responsible for the collection/handling of waste originating from equipment covered by EC-RAEE. This information is also available from the retailer who sold this appliance or from the local authorities who handle waste.

Directive EC-RAEE requires disposal and recycling of electrical and electronic equipment as described therein to be handled through appropriate collection, in suitable centres, separate from collection for the disposal of mixed urban waste.

The user must not dispose of the unit at the end of its life cycle as urban waste, it must instead be handed over to appropriate collection centres as set forth by current standards or as instructed by the distributor.

12 Residual risks

General description

In this section the most common situations are indicated, as these cannot be controlled by the manufacturer and could be a source of risk situations for people or things.

Danger zone

This is an area in which only an authorised operator may work.

The danger zone is the area inside the unit which is accessible only with the deliberate removal of protections or parts thereof.

Handling

The handling operations, if implemented without all of the protection necesssary and without due caution, may cause the drop or the tipping of the unit with the consequent damage, even serious, to persons, things or the unit itself.

Handle the unit following the instructions provided in the present manual regarding the packaging and in compliance with the local regulations in force. Should the refrigerant leak please refer to the refrigerant "Safety sheet". Installation

The incorrect installation of the unit could cause water leaks, condensate accumulation, leaking of the refrigerant, electric shock, poor operation or damage to the unit itself.

Check that the installation has been implemented by qualified technical personnel only and that the instructions contained in the present manual and the local regulations in force have been adhered to.

The installation of the unit in a place where even infrequent leaks of inflam-mable gas and the accumulation of this gas in the area surrounding the area occur could cause explosions or fires.

Carefully check the positioning of the unit.

The installation of the unit in a place unsuited to support its weight and/or guarantee adequate anchorage may result in consequent damage to things, people or the unit itself.

Carefully check the positioning and the anchoring of the unit. Easy access to the unit by children, unauthorised persons or animals may be the source of accidents, some serious.

Install the unit in areas which are only accessible to authorised person and/or provide protection against intrusion into the danger zone.

General risks

Smell of burning, smoke or other signals of serious anomalies may indicate a situation which could cause damage to people, things or the unit itself. Electrically isolate the unit (vellow-red isolator).

Contact the authorised service centre to identify and resolve the problem at the source of the anomaly.

Accidental contact with exchange batteries, compressors, air delivery tubes or other components may cause injuries and/or burns.

Always wear suitable clothing including protective gloves to work inside the danger zone.

Maintenance and repair operations carried out by non-qualified personnel may cause damage to persons, things or the unit itself.

Always contact the qualified assistance centre.

Failing to close the unit panels or failure to check the correct tightening of all of the panelling fixing screws may cause damage to persons, things or the unit itself.

Periodically check that all of the panels are correctly closed and fixed. If there is a fire the temperature of the refrigerant could reach values that increase the pressure to beyond the safety valve with the consequent possible projection of the refrigerant itself or explosion of the circuit parts that remain

isolated by the closure of the tap. Do not remain in the vicinity of the safety valve and never leave the refrigerating system taps closed.

Electric parts

An incomplete attachment line to the electric network or with incorrectly sized cables and/or unsuitable protective devices can cause electric shocks, intoxication, damage to the unit or fires.

Carry out all of the work on the electric system referring to the electric layout and the present manual ensuring the use of a system thereto dedicated. An incorrect fixing of the electric components cover may lead to the entry of dust, water etc inside and may consequently electric shocks, damage to the unit or fires

Always fix the unit cover properly. When the metallic mass of the unit is under voltage and is not correctly connected to the earthing system it may be as source of electric shock and electrocution.

Always pay particular attention to the implementation of the earthing system connections.

Contact with parts under voltage accessible inside the unit after the removal of the guards can cause electric shocks, burns and electrocution. Open and padlock the general isolator prior to removing the guards and

signal work in progress with the appropriate sign. Contact with parts that could be under voltage due to the start up of the unit may cause electric shocks, burns and electrocution.

When voltage is necessary for the circuit open the isolator on the attachment line of the unit itself, padlock it and display the appropriate warning sign. Moving parts

Contact with the transmissions or with the fan aspiration can cause injuries. Prior to entering the inside of the unit open the isolater situated on the con-nection line of the unit itself, padlock and display the appropriate warning sian.

Contact with the fans can cause injury.

Prior to removing the protective grill or the fans, open the isolator on the attachment line of the unit itself, padlock it and display the appropriate warning sign

Refrigerant

The intervention of the safety valve and the consequent expulsion of the gas refrigerant may cause injuries and intoxication.

Always wear suitable clothing including protective gloves and eyeglasses for operations inside the danger zone.

Should the refrigerant leak please refer to the refrigerant "Safety sheet". Contact between open flames or heat sources with the refrigerant or the heating of the gas circuit under pressure (e.g. during welding operations) may cause explosions or fires.

Do not place any heat source inside the danger zone.

The maintenance or repair interventions which include welding must be carried out with the system off.

Hydraulic parts

Defects in tubing, the attachments or the removal parts may cause a leak or water projection with the consequent damages to people, things or shortcircuit the unit.

STANDARD CONFIGURATION

EXCELLENCE VERSION

Acoustic configuration: compressor soundproofing (SC)

General technical data - PERFORMANCE

Internal section size - MSRT-XSC3 External section size - CEV-XT			90.4	100.4	110.4	120.4	140.4	160.4	180.4	200.4	220.4	240.4
			90.0	105.0	115.0	120.0	145.0	160.0	180.0	200.0	210.0	230.0
Cooling			1	1							1	
Cooling capacity	1	[kW]	260	279	310	346	400	441	504	562	616	684
Compressor power input	1	[kW]	74,0	81,9	89,6	101	113	129	148	158	177	194
Total power input	2	[kW]	80,3	91,2	98,9	110	123	141	161	174	193	210
Partial recovery heating capacity	3	[kW]	66,7	72,1	79,9	89,4	103	114	130	144	159	176
EER	1	-	3,23	3,06	3,13	3,14	3,26	3,12	3,13	3,24	3,19	3,26
Water flow-rate (User Side)	1	[l/s]	12,8	13,9	15,2	16,9	19,4	22,0	24,6	27,4	29,8	32,4
Internal exchanger pressure drops	1	[kPa]	50,0	49,0	50,0	46,0	51,0	51,0	52,0	51,0	50,0	55,0
Cooling capacity (EN14511:2013)	4	[kW]	259	278	309	345	399	440	503	559	614	682
Total power input (EN14511:2013)	4	[kW]	81,7	89,6	97,5	109	123	141	161	171	190	207
EER (EN 14511:2013)	4	-	3,17	3,10	3,17	3,18	3,24	3,12	3,13	3,27	3,23	3,29

Data referred to the following conditions: internal exchanger water = 12/7 °C. Entering external exchanger air temperature 35°C. Evaporator fouling factor = 0.44 x 10^(-4) m2 K/W

2. The Total Power Input value does not take into account the part related to the pumps and required to overcome the pressure drops for the circulation of the solution inside the exchangers

 Option. Recovery exchanger water=40/45°C
 Data compliant to Standard EN 14511:2013 referred to the following conditions: - Internal exchanger water temperature = $12/7^{\circ}$ C - Entering external exchanger air temperature = 35° C

Data calculated considering an equivalent distance between the internal and the external section of 7,5 m.

PREMIUM VERSION

Acoustic configuration: compressor soundproofing (SC)

General technical data - PERFORMANCE

Internal section size - MSRT-XSC3			90.4	100.4	110.4	120.4	140.4	160.4	180.4	200.4	220.4	240.4
External section size - CEV-XT			60.0	70.0	75.0	85.0	105.0	115.0	130.0	145.0	150.0	160.0
Cooling												
Cooling capacity	1	[kW]	238	259	283	332	367	415	470	508	579	627
Compressor power input	1	[kW]	83,2	92,0	101	109	127	143	164	174	192	216
Total power input	2	[kW]	89,3	98,1	107	115	137	152	173	183	205	228
Partial recovery heating capacity	3	[kW]	64,2	70,1	76,7	88,2	98,9	111	127	136	154	169
EER	1	-	2,66	2,64	2,65	2,87	2,69	2,73	2,72	2,78	2,82	2,74
Water flow-rate (User Side)	1	[l/s]	12,8	13,9	15,2	16,9	19,4	22,0	24,6	27,4	29,8	32,4
Internal exchanger pressure drops	1	[kPa]	50,0	49,0	50,0	46,0	51,0	51,0	52,0	51,0	50,0	55,0
Cooling capacity (EN14511:2013)	4	[kW]	237	258	278	323	358	414	467	517	581	621
Total power input (EN14511:2013)	4	[kW]	91,1	99,7	108	116	136	155	176	188	206	228
EER (EN 14511:2013)	4	-	2,60	2,59	2,57	2,78	2,63	2,67	2,66	2,75	2,83	2,72

5. Data referred to the following conditions: internal exchanger water = 12/7 °C. Entering external exchanger air temperature 35°C. Evaporator fouling factor = $0.44 \times 10^{-4} \text{ m} 2 \text{ K/W}$

The Total Power Input value does not take into account the part related to the pumps and required to overcome the pressure drops for the circulation of the solution inside the exchangers

7. Option. Recovery exchanger water=40/45°C

8. Data compliant to Standard EN 14511:2013 referred to the following conditions: - Internal exchanger water temperature = $12/7^{\circ}$ C - Entering external exchanger air temperature = 35° C

STANDARD CONFIGURATION

EXCELLENCE VERSION

Acoustic configuration: super-silenced (EN)

General technical data - PERFORMANCE

Internal section size - MSRT-XSC3				100.4	110.4	120.4	140.4	160.4	180.4	200.4	220.4	240.4	
External section size - CEV-XT			115.0	120.0	130.0	150.0	160.0	190.0	200.0	230.0	240.0	280.0	
Cooling													
Cooling capacity	1	[kW]	261	282	307	353	399	436	506	550	614	683	
Compressor power input	1	[kW]	73,2	80,6	91,4	98,6	113	130	148	163	179	193	
Total power input	2	[kW]	79,9	87,3	98,1	108	122	141	159	174	192	207	
Partial recovery heating capacity	3	[kW]	66,9	72,5	79,6	90,3	102	113	131	143	158	175	
EER	1	-	3,27	3,23	3,13	3,28	3,28	3,10	3,18	3,16	3,19	3,31	
Water flow-rate (User Side)	1	[l/s]	12,4	13,4	14,7	16,3	18,8	20,9	23,5	26,2	28,6	30,7	
Internal exchanger pressure drops	1	[kPa]	47,0	46,0	47,0	43,0	48,0	46,0	47,0	47,0	46,0	49,0	
Cooling capacity (EN14511:2013)	4	[kW]	261	281	306	352	398	435	504	549	612	681	
Total power input (EN14511:2013)	4	[kW]	80,9	88,4	99,3	106	123	142	160	176	192	207	
EER (EN 14511:2013)	4	-	3,22	3,18	3,08	3,32	3,24	3,06	3,15	3,12	3,19	3,29	

1. Data referred to the following conditions: internal exchanger water = 12/7 °C. Entering external exchanger air temperature 35°C. Evaporator fouling factor = $0.44 \times 10^{-4} \text{ m} 2 \text{ K/W}$

2. The Total Power Input value does not take into account the part related to the pumps and required to overcome the pressure drops for the circulation of the solution inside the exchangers

3. Option. Recovery exchanger water=40/45°C

 Data compliant to Standard EN 14511:2013 referred to the following conditions: - Internal exchanger water temperature = $12/7^{\circ}$ C - Entering external exchanger air temperature = 35° C

Data calculated considering an equivalent distance between the internal and the external section of 7,5 m.

PREMIUM VERSION

Acoustic configuration: super-silenced (EN)

General technical data - PERFORMANCE

Internal section size - MSRT-XSC3			90.4	100.4	110.4	120.4	140.4	160.4	180.4	200.4	220.4	240.4
External section size - CEV-XT			85.0	95.0	105.0	115.0	120.0	130.0	150.0	160.0	190.0	200.0
Cooling												
Cooling capacity	1	[kW]	240	258	283	325	373	404	472	507	567	617
Compressor power input	1	[kW]	79,7	91,0	100	111	125	144	160	173	195	216
Total power input	2	[kW]	86,3	95,5	105	116	129	148	169	182	207	227
Partial recovery heating capacity	3	[kW]	63,9	69,9	76,7	87,2	99,4	110	127	136	153	166
EER	1	-	2,78	2,70	2,71	2,80	2,88	2,73	2,79	2,78	2,75	2,72
Water flow-rate (User Side)	1	[l/s]	12,4	13,4	14,7	16,3	18,8	20,9	23,5	26,2	28,6	30,7
Internal exchanger pressure drops	1	[kPa]	47,0	46,0	47,0	43,0	48,0	46,0	47,0	47,0	46,0	49,0
Cooling capacity (EN14511:2013)	4	[kW]	240	258	283	318	365	396	473	520	571	611
Total power input (EN14511:2013)	4	[kW]	85,4	97,5	107	117	130	149	169	185	207	226
EER (EN 14511:2013)	4	-	2,80	2,64	2,65	2,72	2,80	2,66	2,80	2,82	2,76	2,71

Data referred to the following conditions: internal exchanger water = 12/7 °C. Entering external exchanger air temperature 35°C. Evaporator fouling factor = 0.44 x 10^(-4) m2 K/W

 Option. Recovery exchanger water=40/45°C
 Data compliant to Standard EN 14511:2013 referred to the following conditions: - Internal exchanger water temperature = $12/7^{\circ}$ C - Entering external exchanger air temperature = 35° C

The Total Power Input value does not take into account the part related to the pumps and required to 6. overcome the pressure drops for the circulation of the solution inside the exchangers

Data calculated considering an equivalent distance between the internal and the external section of 7,5 m.

58

DUAL CONFIGURATION

EXCELLENCE VERSION

Acoustic configuration: compressor soundproofing (SC)

General technical data - PERFORMANCE

Internal section size - MSRT-XSC3			D140.4	D160.4	D180.4	D200.4	D220.4	D240.4						
External section size - CEV-XT			D145.0	D160.0	D180.0	D200.0	D210.0	D230.0						
Cooling														
Cooling capacity	1	[kW]	800	883	1008	1123	1232	1368						
Compressor power input	1	[kW]	226	257	296	315	354	388						
Total power input	2	[kW]	245	283	322	347	386	420						
Partial recovery heating capacity	3	[kW]	205	228	261	288	317	351						
EER	1	-	3,26	3,12	3,13	3,23	3,19	3,25						
Water flow-rate (User Side)	1	[l/s]	18,8	20,9	23,5	26,2	28,6	30,7						
Internal exchanger pressure drops	1	[kPa]	48,0	46,0	47,0	47,0	46,0	49,0						
Cooling capacity (EN14511:2013)	4	[kW]	798	880	1005	1118	1228	1364						
Total power input (EN14511:2013)	4	[kW]	246	282	321	341	380	415						
EER (EN 14511:2013)	4	-	3,24	3,12	3,13	3,27	3,23	3,29						

1. Data referred to the following conditions: internal exchanger water = 12/7 °C. Entering external exchanger air temperature 35°C. Evaporator fouling factor = $0.44 \times 10^{-4} \text{ m} 2 \text{ K/W}$

2. The Total Power Input value does not take into account the part related to the pumps and required to overcome the pressure drops for the circulation of the solution inside the exchangers

3. Option. Recovery exchanger water=40/45°C

4. Data compliant to Standard EN 14511:2013 referred to the following conditions: - Internal exchanger water temperature = $12/7^{\circ}$ C - Entering external exchanger air temperature = 35° C

Data calculated considering an equivalent distance between the internal and the external section of 7,5 m.

PREMIUM VERSION

Acoustic configuration: compressor soundproofing (SC)

General technical data - PERFORMANCE

Internal section size - MSRT-XSC3	Internal section size - MSRT-XSC3					D200.4	D220.4	D240.4					
External section size - CEV-XT			D105.0	D115.0	D130.0	D145.0	D150.0	D160.0					
Cooling													
Cooling capacity	1	[kW]	735	830	941	1016	1157	1254					
Compressor power input	1	[kW]	255	285	327	347	384	432					
Total power input	2	[kW]	273	304	346	366	410	457					
Partial recovery heating capacity	3	[kW]	198	223	254	273	308	337					
EER	1	-	2,68	2,72	2,71	2,77	2,82	2,74					
Water flow-rate (User Side)	1	[l/s]	18,8	20,9	23,5	26,2	28,6	30,7					
Internal exchanger pressure drops	1	[kPa]	48,0	46,0	47,0	47,0	46,0	49,0					
Cooling capacity (EN14511:2013)	4	[kW]	717	828	933	1035	1163	1242					
Total power input (EN14511:2013)	4	[kW]	272	310	351	376	411	457					
EER (EN 14511:2013)	4	-	2,63	2,67	2,66	2,75	2,83	2,72					

5. Data referred to the following conditions: internal exchanger water = 12/7 °C. Entering external exchanger air temperature 35°C. Evaporator fouling factor = 0.44 \times 10 \wedge (-4) m 2 K/W 6. The Total Power Input value does not take into account the part related to the pumps and required to

overcome the pressure drops for the circulation of the solution inside the exchangers

 Option. Recovery exchanger water=40/45°C
 Data compliant to Standard EN 14511:2013 referred to the following conditions: - Internal exchanger water temperature = $12/7^{\circ}$ C - Entering external exchanger air temperature = 35° C

DUAL CONFIGURATION

EXCELLENCE VERSION

Acoustic configuration: super-silenced (EN)

General technical data - PERFORMANCE

Internal section size - MSRT-XSC3			D140.4	D160.4	D180.4	D200.4	D220.4	D240.4						
External section size - CEV-XT			D160.0	D190.0	D200.0	D230.0	D240.0	D280.0						
Cooling														
Cooling capacity	1	[kW]	799	872	1011	1101	1227	1365						
Compressor power input	1	[kW]	225	259	295	326	357	386						
Total power input	2	[kW]	243	282	318	348	384	413						
Partial recovery heating capacity	3	[kW]	205	226	261	285	317	350						
EER	1	-	3,28	3,09	3,18	3,15	3,19	3,29						
Water flow-rate (User Side)	1	[l/s]	18,8	20,9	23,5	26,2	28,6	30,7						
Internal exchanger pressure drops	1	[kPa]	48,0	46,0	47,0	47,0	46,0	49,0						
Cooling capacity (EN14511:2013)	4	[kW]	797	869	1009	1098	1224	1361						
Total power input (EN14511:2013)	4	[kW]	246	284	320	351	383	413						
EER (EN 14511:2013)	4	-	3,24	3,06	3,15	3,12	3,19	3,29						

1. Data referred to the following conditions: internal exchanger water = 12/7 °C. Entering external exchanger air temperature 35°C. Evaporator fouling factor = 0.44 x 10 $^{-(4)}$ m2 K/W

The Total Power Input value does not take into account the part related to the pumps and required to overcome the pressure drops for the circulation of the solution inside the exchangers 3. Option. Recovery exchanger water=40/45°C

4. Data compliant to Standard EN 14511:2013 referred to the following conditions: - Internal exchanger water temperature = 12/7°C - Entering external exchanger air temperature = 35°C

Data calculated considering an equivalent distance between the internal and the external section of 7,5 m.

PREMIUM VERSION

Acoustic configuration: super-silenced (EN)

General technical data - PERFORMANCE

Internal section size - MSRT-XSC3		D140.4	D160.4	D180.4	D200.4	D220.4	D240.4	
External section size - CEV-XT			D120.0	D130.0	D150.0	D160.0	D190.0	D200.0
Cooling								
Cooling capacity	1	[kW]	745	808	945	1013	1135	1233
Compressor power input	1	[kW]	249	287	320	346	391	431
Total power input	2	[kW]	258	296	338	364	413	454
Partial recovery heating capacity	3	[kW]	199	219	253	272	305	333
EER	1	-	2,83	2,68	2,79	2,77	2,74	2,71
Water flow-rate (User Side)	1	[l/s]	18,8	20,9	23,5	26,2	28,6	30,7
Internal exchanger pressure drops	1	[kPa]	48,0	46,0	47,0	47,0	46,0	49,0
Cooling capacity (EN14511:2013)	4	[kW]	730	791	945	1041	1143	1222
Total power input (EN14511:2013)	4	[kW]	261	298	338	369	413	452
EER (EN 14511:2013)	4	-	2,80	2,66	2,80	2,82	2,76	2,71

 Data referred to the following conditions: internal exchanger water = 12/7 °C. Entering external exchanger air temperature 35°C. Evaporator fouling factor = 0.44 x 10^(-4) m2 K/W

6. The Total Power Input value does not take into account the part related to the pumps and required to overcome the pressure drops for the circulation of the solution inside the exchangers

7. Option. Recovery exchanger water=40/45°C

 Data compliant to Standard EN 14511:2013 referred to the following conditions: - Internal exchanger water temperature = 12/7°C - Entering external exchanger air temperature = 35°C

TRIPLE CONFIGURATION

EXCELLENCE VERSION

Acoustic configuration: compressor soundproofing (SC)

General technical data - PERFORMANCE

Internal section size - MSRT-XSC3			T180.4	T200.4	T220.4	T240.4
External section size - CEV-XT			T180.0	T200.0	T210.0	T230.0
Cooling					1	
Cooling capacity	1	[kW]	1511	1685	1847	2053
Compressor power input	1	[kW]	444	473	531	581
Total power input	2	[kW]	482	521	579	630
Partial recovery heating capacity	3	[kW]	391	431	476	527
EER	1	-	3,13	3,23	3,19	3,25
Water flow-rate (User Side)	1	[l/s]	24,6	27,4	29,8	32,4
Internal exchanger pressure drops	1	[kPa]	52,0	51,0	50,0	55,0
Cooling capacity (EN14511:2013)	4	[kW]	1508	1676	1842	2046
Total power input (EN14511:2013)	4	[kW]	482	512	570	622
EER (EN 14511:2013)	4	-	3,13	3,27	3,23	3,29

1. Data referred to the following conditions: internal exchanger water = 12/7 °C. Entering external exchanger air temperature 35°C. Evaporator fouling factor = 0.44 x 10^(-4) m2 K/W

The Total Power Input value does not take into account the part related to the pumps and required to overcome the pressure drops for the circulation of the solution inside the exchangers 3. Option. Recovery exchanger water=40/45°C

4. Data compliant to Standard EN 14511:2013 referred to the following conditions: - Internal exchanger water temperature = 12/7°C - Entering external exchanger air temperature = 35°C

Data calculated considering an equivalent distance between the internal and the external section of 7,5 m.

PREMIUM VERSION

Acoustic configuration: compressor soundproofing (SC)

General technical data - PERFORMANCE

Internal section size - MSRT-XSC3			T180.4	T200.4	T220.4	T240.4
External section size - CEV-XT			T130.0	T145.0	T150.0	T160.0
Cooling					I	
Cooling capacity	1	[kW]	1411	1524	1736	1880
Compressor power input	1	[kW]	491	521	577	647
Total power input	2	[kW]	519	549	614	685
Partial recovery heating capacity	3	[kW]	380	409	462	506
EER	1	-	2,71	2,77	2,82	2,74
Water flow-rate (User Side)	1	[l/s]	24,6	27,4	29,8	32,4
Internal exchanger pressure drops	1	[kPa]	52,0	51,0	50,0	55,0
Cooling capacity (EN14511:2013)	4	[kW]	1400	1552	1744	1862
Total power input (EN14511:2013)	4	[kW]	527	565	617	685
EER (EN 14511:2013)	4	-	2,66	2,75	2,83	2,72

5. Data referred to the following conditions: internal exchanger water = 12/7 °C. Entering external exchanger air temperature 35°C. Evaporator fouling factor = 0.44 x 10^(-4) m2 K/W

6. The Total Power Input value does not take into account the part related to the pumps and required to overcome the pressure drops for the circulation of the solution inside the exchangers

7. Option. Recovery exchanger water=40/45°C

8. Data compliant to Standard EN 14511:2013 referred to the following conditions: - Internal exchanger water temperature = 12/7°C - Entering external exchanger air temperature = 35°C

TRIPLE CONFIGURATION

EXCELLENCE VERSION

Acoustic configuration: super-silenced (EN)

General technical data - PERFORMANCE

Internal section size - MSRT-XSC3			T180.4	T200.4	T220.4	T240.4
External section size - CEV-XT			T200.0	T230.0	T240.0	T280.0
Cooling					I	
Cooling capacity	1	[kW]	1517	1651	1841	2048
Compressor power input	1	[kW]	443	488	536	579
Total power input	2	[kW]	476	522	576	620
Partial recovery heating capacity	3	[kW]	392	428	475	525
EER	1	-	3,18	3,15	3,19	3,29
Water flow-rate (User Side)	1	[l/s]	24,6	27,4	29,8	32,4
Internal exchanger pressure drops	1	[kPa]	52,0	51,0	50,0	55,0
Cooling capacity (EN14511:2013)	4	[kW]	1513	1647	1837	2042
Total power input (EN14511:2013)	4	[kW]	480	527	575	620
EER (EN 14511:2013)	4	-	3,29	3,12	3,19	3,29

Data referred to the following conditions: internal exchanger water = 12/7 °C. Entering external exchanger air temperature 35°C. Evaporator fouling factor = 0.44 x 10^(-4) m2 K/W

 Option. Recovery exchanger water=40/45°C
 Data compliant to Standard EN 14511:2013 referred to the following conditions: - Internal exchanger water \dot{c} temperature = 12/7°C - Entering external exchanger air temperature = 35°C

The Total Power Input value does not take into account the part leaded to the pumps and required to
overcome the pressure drops for the circulation of the solution inside the exchangers

Data calculated considering an equivalent distance between the internal and the external section of 7,5 m.

PREMIUM VERSION

Acoustic configuration: super-silenced (EN)

General technical data - PERFORMANCE

Internal section size - MSRT-XSC3			T180.4	T200.4	T220.4	T240.4
External section size - CEV-XT			T150.0	T160.0	T190.0	T200.0
Cooling				1	I	
Cooling capacity	1	[kW]	1417	1520	1702	1850
Compressor power input	1	[kW]	481	520	586	647
Total power input	2	[kW]	507	546	620	680
Partial recovery heating capacity	3	[kW]	380	408	458	499
EER	1	-	2,79	2,77	2,74	2,71
Water flow-rate (User Side)	1	[l/s]	24,6	27,4	29,8	32,4
Internal exchanger pressure drops	1	[kPa]	52,0	51,0	50,0	55,0
Cooling capacity (EN14511:2013)	4	[kW]	1418	1561	1714	1833
Total power input (EN14511:2013)	4	[kW]	507	554	620	677
EER (EN 14511:2013)	4	-	2,80	2,82	2,76	2,71

5. Data referred to the following conditions: internal exchanger water = 12/7 °C. Entering external exchanger air temperature 35°C. Evaporator fouling factor = $0.44 \times 10^{-4} \text{ m} 2 \text{ K/W}$

6. The Total Power Input value does not take into account the part related to the pumps and required to overcome the pressure drops for the circulation of the solution inside the exchangers

 Option. Recovery exchanger water=40/45°C
 Data compliant to Standard EN 14511:2013 referred to the following conditions: - Internal exchanger water temperature = $12/7^{\circ}$ C - Entering external exchanger air temperature = 35° C

STANDARD CONFIGURATION EXCELLENCE VERSION

Acoustic configuration: compressor soundproofing (SC)

General technical data - INTERNAL UNIT CONSTRUCTION

Internal costion size MCDT VCC2			00.4	100.4	110.4	120.4	140.4	160.4	100.4	200.4	220.4	240.4
Internal section size - MSRT-XSC3			90.4	100.4	110.4	120.4	140.4	160.4	180.4	200.4	220.4	240.4
Compressor												
Type of compressors		-	Scroll									
Refrigerant		-	R-410A									
No. of compressors		Nr	4	4	4	4	4	4	4	4	4	4
Rated power (C1)		[HP]	45	50	55	60	70	80	90	100	100	120
Rated power (C2)		[HP]	45	50	55	60	70	80	90	100	120	120
Std Capacity control steps		-	6	6	6	4	6	4	6	6	6	4
Oil charge (C1)		[1]	10	11	13	13	13	13	13	13	13	13
Oil charge (C2)		[1]	10	11	13	13	13	13	13	13	13	13
Refrigeration circuits		-	2	2	2	2	2	2	2	2	2	2
Internal exchanger												
Type of internal exchanger	2	-	PHE									
Water content		[1]	20	22	24	29	32	37	42	49	58	62
System water content	3	I	937	1196	1502	1819	1840	2367	1801	2359	2436	3483
Connections												
Water fittings		-	4″	4″	4″	4″	4″	4″	4″	5″	5″	5″
Power supply												
Standard power supply		V	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50
Refrigerant connections												
Gas line	7	mm	28	35	35	35	35	42	42	42	42/54	54
Liquid line	7	mm	35	35	35	35	42	42	42	42	42/54	54
Electrical data												
F.L.I Total		kW	106,5	117,4	127,0	144,6	165,8	187,0	212,6	233,8	257,2	280,6
F.L.A Total		A	180,6	191,9	208,7	237,5	266,5	295,5	346,9	375,9	416,1	456,3
M.I.C Value	6	A	431,0	442,3	459,1	487,9	586,4	615,4	616,6	645,6	685,8	726,0
M.I.C with soft start accessory	6	A	293,2	304,5	321,3	350,1	414,4	443,4	544,6	573,6	613,8	654,0

The combinations between internal and external unit are uniquely identified by following the table columns.

Data calculated considering an equivalent distance between the internal and the external section of 7,5 m.

1. PHE = plate exchanger

2. Recommended system water content that does not consider the internal exchanger water content (evaporator). With outdoor air low temperature applications or low medium requested loads, the minimum installation water volume is obtained doubling the indicated value.

3. M.I.C.=Maximum unit starting current. The M.I.C. value is obtained adding the max. compressor starting current of the highest size to the power input at max. admissible conditions (F.L.A.) of the remaining electric components. Electrical data refer to standard units; according to the installed accessories, the data can suffer some variations. Unbalance between phase max 2 %. Voltage variation: max +/- 10%.

4. Where not specified, the diameters of the supply and liquid lines are equal in both refrigeration circuits. In size 220.4 the circuit 1 diameter both of the supply and the liquid line is 42 mm, the circuit 2 diameter is 54 mm.

STANDARD CONFIGURATION EXCELLENCE VERSION

Acoustic configuration: compressor soundproofing (SC)

General technical data - EXTERNAL UNIT CONSTRUCTION

External section size - CEV-XT			90.0	105.0	115.0	120.0	145.0	160.0	180.0	200.0	210.0	230.0
Fans												
Type of fans	1	-	AX									
Number of fans		Nr	4	6	6	6	6	8	8	10	10	10
Type of motor	2	-	AC									
Standard airflow		[l/s]	23553	36583	36143	35507	34218	47084	46331	58684	57754	56458
Power supply												
Standard power supply		V	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50
Refrigerant connections												
Supply line	4	mm	28	35	35	35	35	42	42	42	42/54	54
Liquid line	4	mm	35	35	35	35	42	42	42	42	42/54	54
Electrical data												
F.L.I Total		kW	7,7	11,6	11,6	11,6	11,6	15,5	15,5	19,4	19,4	19,4
F.L.A Total		Α	15,6	23,4	23,4	23,4	23,4	31,2	31,2	39,0	39,0	39,0
M.I.C Value	3	А	33,8	41,6	41,6	41,6	41.,6	67,6	67,6	75,4	75,4	75,4

1. AX = axial fan

 $2. \quad AC = a synchronous \ three-phase \ external \ rotor \ motor. \\$

3. M.I.C.=Maximum unit starting current. The M.I.C. value is obtained adding the max. compressor starting current of the highest size to the power input at max. admissible conditions (F.L.A.) of the remaining electric components. Electrical data refer to standard units; according to the installed accessories, the data can suffer some variations. Unbalance between phase max 2 %. Voltage variation: max +/- 10%.

4. Where not specified, the diameters of the supply and liquid lines are equal in both refrigeration circuits. In size 220.4 the circuit 1 diameter both of the supply and the liquid line is 42 mm, the circuit 2 diameter is 54 mm.

PREMIUM VERSION

Acoustic configuration: compressor soundproofing (SC)

General technical data - EXTERNAL UNIT CONSTRUCTION

External section size - CEV-XT			60.0	70.0	75.0	85.0	105.0	115.0	130.0	145.0	150.0	160.0
Fans												
Type of fans	1	-	AX									
Number of fans		Nr	4	4	4	4	6	6	6	6	8	8
Type of motor	2	-	AC									
Standard airflow		[l/s]	24876	24603	24319	23563	36583	36143	34976	34218	46598	47084
Power supply												
Standard power supply		V	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50
Refrigerant connections												
Supply line	4	mm	28	35	35	35	35	42	42	42	42/54	54
Liquid line	4	mm	35	35	35	35	42	42	42	42	42/54	54
Electrical data												
F.L.I Total		kW	7,7	7,7	7,7	7,7	11,6	11,6	11,6	11,6	15,5	15,5
F.L.A Total		А	15,6	15,6	15,6	15,6	23,4	23,4	23,4	23,4	31,2	31,2
M.I.C Value	3	Α	33,8	33,8	33,8	33,8	41,6	41,6	41,6	41,6	67,6	67,6

1. AX = axial fan

2. AC = asynchronous three-phase external rotor motor.

3. M.I.C.=Maximum unit starting current. The M.I.C. value is obtained adding the max. compressor starting current of the highest size to the power input at max. admissible conditions (F.L.A.) of the remaining electric components. Electrical data refer to standard units; according to the installed accessories, the data can suffer some variations. Unbalance between phase max 2 %. Voltage variation: max +/- 10%.

4. Where not specified, the diameters of the supply and liquid lines are equal in both refrigeration circuits. In size 220.4 the circuit 1 diameter both of the supply and the liquid line is 42 mm, the circuit 2 diameter is 54 mm.

STANDARD CONFIGURATION EXCELLENCE VERSION

Acoustic configuration: super-silenced (EN)

General technical data - EXTERNAL UNIT CONSTRUCTION

External section size - CEV-XT	External section size - CEV-XT			120.0	130.0	150.0	160.0	190.0	200.0	230.0	240.0	280.0
Fans												
Type of fans	4	-	AX									
Number of fans		Nr	6	6	6	8	8	10	10	10	12	12
Type of motor	5	-	AC									
Standard airflow		[l/s]	28959	28247	27792	38367	37417	47772	46598	44348	55756	53050
Power supply												
Standard power supply		V	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50
Refrigerant connections												
Supply line	7	mm	28	35	35	35	35	42	42	42	42/54	54
Liquid line	7	mm	35	35	35	35	42	42	42	42	42/54	54
Electrical data												
F.L.I Total		kW	7,2	7,2	7,2	9,6	9,6	12,1	12,1	12,1	14,5	14,5
F.L.A Total		Α	13,3	13,3	13,3	17,8	17,8	22,	22,	22,	26,7	26,7
M.I.C Value	6	Α	17,5	17,5	17,5	26,1	26,1	30,5	30,5	30,5	35,0	35,0

1. AX = axial fan

3. M.I.C.=Maximum unit starting current. The M.I.C. value is obtained adding the max. compressor starting current of the highest size to the power input at max. admissible conditions (F.L.A.) of the remaining electric components. Electrical data refer to standard units; according to the installed accessories, the data can suffer some variations. Unbalance between phase max 2 %. Voltage variation: max +/- 10%.

4. Where not specified, the diameters of the supply and liquid lines are equal in both refrigeration circuits. In size 220.4 the circuit 1 diameter both of the supply and the liquid line is 42 mm, the circuit 2 diameter is 54 mm.

PREMIUM VERSION

Acoustic configuration: super-silenced (EN)

General technical data - EXTERNAL UNIT CONSTRUCTION

External section size - CEV-XT			85.0	95.0	105.0	115.0	120.0	130.0	150.0	160.0	190.0	200.0
Fans												
Type of fans	1	-	AX									
Number of fans		Nr	4	6	6	6	6	6	8	8	10	10
Type of motor	2	-	AC									
Standard airflow		[l/s]	18680	29838	29353	28959	28247	27656	38367	37417	47773	46598
Power supply												
Standard power supply		V	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50
Refrigerant connections												
Supply line	4	mm	28	35	35	35	35	42	42	42	42/54	54
Liquid line	4	mm	35	35	35	35	42	42	42	42	42/54	54
Electrical data												
F.L.I Total		kW	4,8	7,2	7,2	7,2	7,2	7,2	9,6	9,6	12,1	12,1
F.L.A Total		А	8,9	13,3	13,3	13,3	13,3	13,3	17,8	17,8	22,3	22,3
M.I.C Value	3	Α	13,0	17,5	17,5	17,5	17,5	17,5	26,1	26,1	30,5	30,5

1. AX = axial fan

 $2. \quad AC = a synchronous \ three-phase \ external \ rotor \ motor. \\$

3. M.I.C.=Maximum unit starting current. The M.I.C. value is obtained adding the max. compressor starting current of the highest size to the power input at max. admissible conditions (F.L.A.) of the remaining electric components. Electrical data refer to standard units; according to the installed accessories, the data can suffer some variations. Unbalance between phase max 2 %. Voltage variation: max +/- 10%.

4. Where not specified, the diameters of the supply and liquid lines are equal in both refrigeration circuits. In size 220.4 the circuit 1 diameter both of the supply and the liquid line is 42 mm, the circuit 2 diameter is 54 mm.

Sound levels

EXTERNAL SECTION: CEV-XT

EXCELLENCE VERSION

Compressor soundproofing (SC)

			Sou	nd pow	er level	(dB)			Sound power	Pressure level
Size			(Octave b	oand (Hz	<u>z</u>)			level	at 10m
	63	125	250	500	1000	2000	4000	8000	dB(A)	dB(A)
90.0	92	80	81	79	76	74	73	69	82	50
105.0	94	82	83	81	77	76	74	70	84	52
115.0	94	82	83	81	77	76	74	70	84	52
120.0	94	82	83	81	77	76	74	70	84	52
145.0	94	82	83	81	77	76	74	70	84	52
160.0	95	83	84	82	79	77	76	72	85	53
180.0	95	83	84	82	79	77	76	72	85	53
200.0	96	84	85	83	80	78	77	73	86	53
210.0	96	84	85	83	80	78	77	73	86	53
230.0	96	84	85	83	80	78	77	73	86	53

Super-silenced (EN)

Size			Sou		Sound power level	Pressure level at 10m				
	63	125	250	500	1000	2000	4000	8000	dB(A)	dB(A)
115.0	86	77	78	75	72	71	69	65	79	46
120.0	86	77	78	75	72	71	69	65	79	46
130.0	86	77	78	75	72	71	69	65	79	46
150.0	87	78	79	76	74	72	71	66	80	48
160.0	87	78	79	76	74	72	71	66	80	48
190.0	88	79	80	77	74	73	72	67	81	48
200.0	88	79	80	77	74	73	72	67	81	48
230.0	88	79	80	77	74	73	72	67	81	48
240.0	89	80	81	78	75	74	72	68	82	49
280.0	89	80	81	78	75	74	72	68	82	49

PREMIUM VERSION

Compressor soundproofing (SC)

Sound power level (dB) Sound Pressure power level Octave band (Hz) level at 10m Size dB(A) dB(A) 60.0 70.0 75.0 85.0 105.0 115.0 130.0 145.0 150.0 160.0

Super-silenced (EN)

			Sou		Sound	Pressure				
Size			C)ctave b	oand (H	z)			power level	level at 10m
	63	125	250	500	1000	2000	4000	8000	dB(A)	dB(A)
85.0	84	75	76	73	70	69	68	63	77	45
95.0	86	77	78	75	72	71	69	65	79	46
105.0	86	77	78	75	72	71	69	65	79	46
115.0	86	77	78	75	72	71	69	65	79	46
120.0	86	77	78	75	72	71	69	65	79	46
135.0	86	77	78	75	72	71	69	65	79	46
150.0	87	78	79	76	74	72	71	66	80	48
160.0	87	78	79	76	74	72	71	66	80	48
190.0	88	79	80	77	74	73	72	67	81	48
200.0	88	79	80	77	74	73	72	67	81	48

The sound levels refer to the external section with Axitop in test nominal conditions. The sound pressure level refers to 10 m from the standard unit outer surface operating in open field and at full load.

Measures are according to UNI EN ISO 9614-2 regulations, with respect to the EUROVENT 8/1 certification, which provides for a tolerance of 3 dB(A) on the sound power level, which is the only acoustic data to be considered binding.

Data referred to the following conditions. - internal exchanger water = 12/7 °C - Ambient temperature = 35 °C

In the case of multiple installations, the calculation of the total sound level will follow what is indicated in the acoustical Regulations.

Sound levels

INTERNAL SECTION: MSRT-XSC3

Size				· ·	er level band (Hz				Sound power level	Pressure level at 1m
	63	125	250	500	1000	2000	4000	8000	dB(A)	dB(A)
90.4	50	55	69	73	77	77	71	64	82	64
100.4	50	59	72	74	77	78	71	63	82	64
110.4	50	56	72	74	78	79	73	66	83	65
120.4	50	56	72	75	79	79	73	65	84	66
140.4	50	55	73	76	82	81	74	65	86	68
160.4	50	55	74	76	82	82	75	66	86	68
180.4	50	65	88	75	79	80	77	69	86	69
200.4	50	65	88	76	82	82	77	69	87	69
220.4	50	67	89	76	80	82	78	70	87	69
240.4	50	68	91	76	79	81	79	71	87	69

The sound levels refer to the external section with Axitop in test nominal conditions. The sound pressure level refers to 1 m from the standard unit outer surface operating in open field and at full load. Measures are according to UNI EN ISO 9614-2 regulations, with respect to the EUROVENT 8/1 certification, which provides for a tolerance of 3 dB(A) on the sound power level, which is the only acoustic data to be considered binding.

Data referred to the following conditions. - internal exchanger water = $12/7 \degree C$ - Ambient temperature = $35 \degree C$

Admissible water flow-rates

Minimum (Qmin) and maximum (Qmax) admissible water flow for the unit to operate correctly.

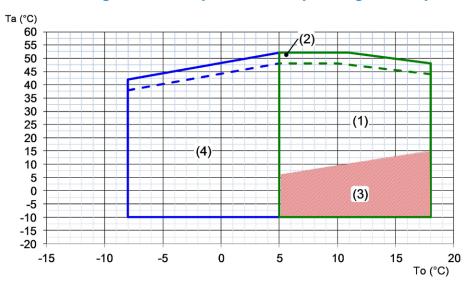
EXCELLEN	ICE SC / EN	90.4	100.4	110.4	120.4	140.4	160.4	180.4	200.4	220.4	240.4
Qmin	[l/s]	6,7	7,4	8,0	9,3	10,1	11,5	12,8	14,3	15,8	16,4
Qmax	[l/s]	18,3	20,0	21,8	25,1	27,5	31,2	34,5	38,6	42,4	44,0
PREMIU	M SC / EN	90.4	100.4	110.4	120.4	140.4	160.4	180.4	200.4	220.4	240.4
PREMIU Qmin	M SC / EN [l/s]	90.4 6,7	100.4 7,4	110.4 8,0	120.4 9,3	140.4 10,1	160.4 11,5	180.4 12,8	200.4 14,3	220.4 15,8	240.4 16,4

Overload and control device calibrations

		open	closed	value
High pressure safety pressure switch	[kPa]	4050	3300	-
Antifreeze protection	[°C]	3	5.5	-
High pressure safety valve	[kPa]	-	-	4500
Low pressure safety valve	[kPa]	-	-	2950
Max no. of compressor starts per hour	[n°]	-	-	10
High compressor discharge temperature safety thermostat	[°C]	-	-	140

Exchanger operating range

	D	Pr	DPw
PED (CE) - Internal echanger	4500	4500	1000
PED (CE) - External exchanger	4500	4500	1000


DPr = Maximum operating pressure on refrigerant side in kPa

DPw = Maximum operating pressure on water side in kPa

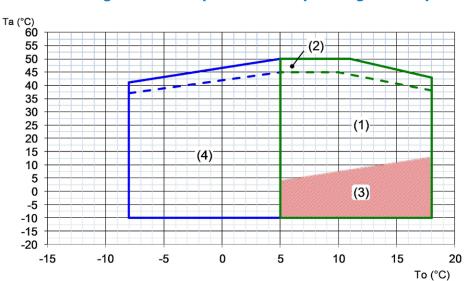
Operating range - Cooling

EXCELLENCE VERSION

Acoustic configuration: compressor soundproofing (SC) / super-silenced (EN)

Ta ($^{\circ}$ C) = external exchanger inlet air temperature (D.B.)

To (°C) = internal exchanger outlet water temperature


Standard unit operating range at full load 1.

Unit operating range with automatic staging of the compressor capacity Standard unit operating range with air flow automatic modulation. Only with CREFB option. 2.

3.

4. Unit operating range in 'B - Low water temperature' configuration (40% ethylene glycol). Only with CREFB option.

PREMIUM VERSION

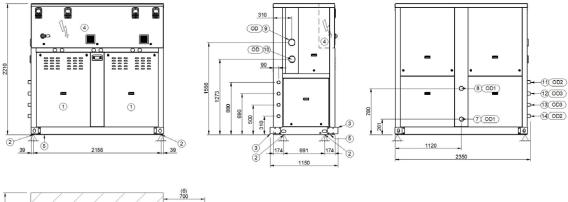
Acoustic configuration: compressor soundproofing (SC) / super-silenced (EN)

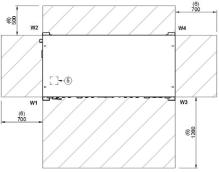
Ta (°C) = external exchanger inlet air temperature (D.B.) To $(^{\circ}C)$ = internal exchanger outlet water temperature

Standard unit operating range at full load 1.

2. Unit operating range with automatic staging of the compressor capacity

Standard unit operating range with air flow automatic modulation. Only with CREFB option. 3.

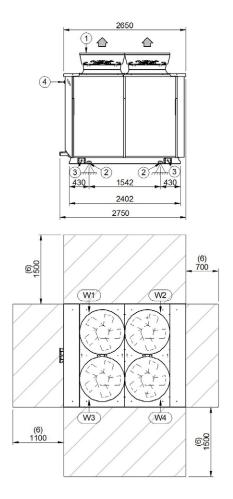

Unit operating range in 'B - Low water temperature' configuration (40% ethylene glycol). Only with CREFB option. 4.

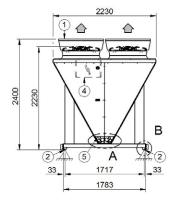

Dimensional drawings

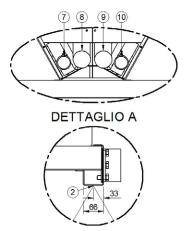
INTERNAL SECTIONS: MSRT-XSC3

Size 90.4 - 240.4

DAA4W90.4_240.4_EXC_0 Date: 08/09/2016


- 1. Compressors
- 2. Antivibration fixing holes ø 15mm
- 3. Lifting brackets (removable)
- 4. General electrical panel
- 5. Power input
- 6. Suggested clearance
- 7. Recovery side exchanger water inlet (optional)
- 8. Recovery side exchanger water outlet (optional)


- 9. Water inlet user side of no pumps unit / Water outlet user side of unit with pumps (optional)
- 10. Water outlet user side of no pumps unit / Water inlet user side of unit with pumps (optional)
- 11. Circuit 1 liquid line
- 12. Circuit 1 gas line
- 13. Circuit 2 gas line
- 14. Circuit 2 liquid line


Size		90.4	100.4	110.4	120.4	140.4	160.4	180.4	200.4	220.4	240.4
OD (internal exchanger)	mm	114,3	114,3	114,3	114,3	114,3	114,3	114,3	139,7	139,7	139,7
OD1 (partial recovery)	mm	60,3	60,3	60,3	60,3	76,1	76,1	76,1	76,1	76,1	76,1
OD2 (liquid line)	mm	35	35	35	35	35	42	42	42	42/54	54
OD3 (gas line)	mm	28	35	35	35	42	42	42	42	42/54	54
W1 Supporting point	kg	399	453	471	486	498	509	565	578	611	653
W2 Supporting point	kg	303	336	348	359	369	379	414	426	448	481
W3 Supporting point	kg	421	470	486	502	517	530	603	620	666	698
W4 Supporting point	kg	324	352	363	375	389	400	452	468	503	525
Operating weight	kg	1447	1611	1668	1722	1773	1818	2034	2092	2228	2357
Shipping weight	kg	1385	1545	1595	1645	1685	1725	1925	1975	2095	2210

Size 60.0 - 90.0

DAA5W60.0_90.0_0 Date: 13/09/2016

DETTAGLIO B

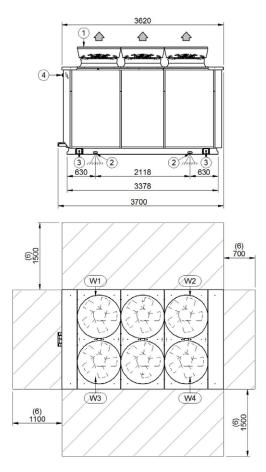
1. Axitop (removable)

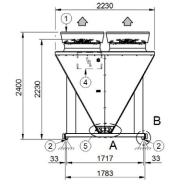
2. Antivibration fixing holes ø 18mm

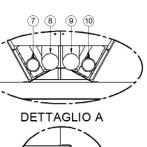
3. Lifting brackets (removable)

4. General electrical panel

5. Power input


6. Suggested clearance


- 7. Circuit 1 liquid line
- 8. Circuit 1 gas line
- 9. Circuit 2 gas line
- 10. Circuit 2 liquid line


For the measurement of the refrigeration connection diameter refer to the "General technical data - Construction" table.

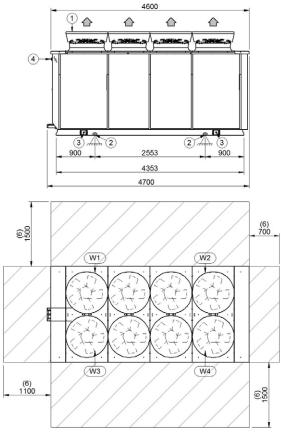
Size		60.0	70.0	75.0	85.0	90.0
Length	mm	2750	2750	2750	2750	2750
Depth	mm	2230	2230	2230	2230	2230
Height	mm	2400	2400	2400	2400	2400
W1 Supporting point	kg	143	145	157	163	173
W2 Supporting point	kg	139	141	153	159	169
W3 Supporting point	kg	143	145	157	163	173
W4 Supporting point	kg	139	141	153	159	169
Operating weight	kg	564	572	620	644	684
Shipping weight	kg	534	542	590	614	654

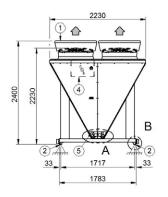
Size 95.0 - 145.0

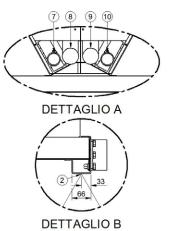
DAA5W95.0_145.0_0 Date: 12/09/2016

1. Axitop (removable)

- 2. Antivibration fixing holes ø 18mm
- 3. Lifting brackets (removable)
- 4. General electrical panel
- 5. Power input


- Suggested clearance
 Circuit 1 liquid line
- 8. Circuit 1 gas line
- 9. Circuit 2 gas line
- 10. Circuit 2 liquid line


For the measurement of the refrigeration connection diameter refer to the	"General technical data - Construction" table.
---	--


Size		95.0	105.0	115.0	120.0	130.0	145.0
Length	mm	3700	3700	3700	3700	3700	3700
Depth	mm	2230	2230	2230	2230	2230	2230
Height	mm	2400	2400	2400	2400	2400	2400
W1 Supporting point	kg	209	212	229	234	237	257
W2 Supporting point	kg	203	206	223	227	232	252
W3 Supporting point	kg	209	212	229	234	237	257
W4 Supporting point	kg	203	206	223	227	232	252
Operating weight	kg	824	836	904	922	938	1018
Shipping weight	kg	794	806	874	892	908	988

Size 150.0 - 180.0

DAA5W150.0_180.0 Date: 12/09/2016

1. Axitop (removable)

- 2. Antivibration fixing holes ø 18mm
- 3. Lifting brackets (removable)
- 4. General electrical panel

5. Power input

- 6. Suggested clearance
- 7. Circuit 1 liquid line
 8. Circuit 1 gas line
- 9. Circuit 2 gas line
- 10. Circuit 2 liquid line


For the measurement of the refrigeration connection diameter refer to the "General technical data - Construction" table.

Size		150.0	160.0	180.0
Length	mm	4700	4700	4700
Depth	mm	2230	2230	2230
Height	mm	2400	2400	2400
W1 Supporting point	kg	313	304	343
W2 Supporting point	kg	306	295	335
W3 Supporting point	kg	313	304	343
W4 Supporting point	kg	306	295	335
Operating weight	kg	1238	1198	1356
Shipping weight	kg	1208	1168	1326

DAA5W190.0 230.0 0 Date: 12/09/2016

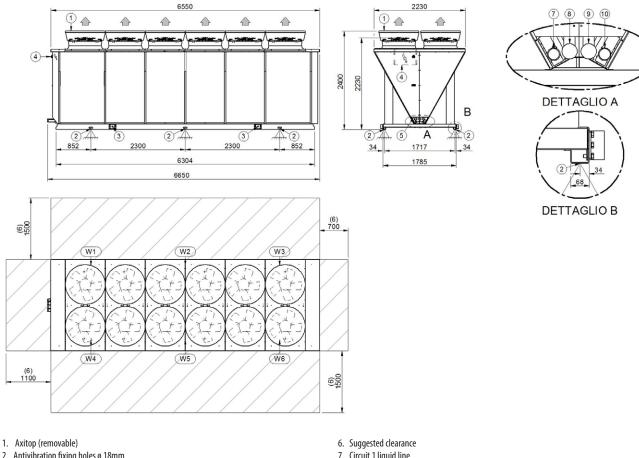
EXTERNAL SECTION: CEV-XT

Size 190.0 - 230.0

- 3. Lifting brackets (removable)
- 4. General electrical panel
- 5. Power input

- 9. Circuit 2 gas line
- 10. Circuit 2 liquid line

For the measurement of the refrigeration connection diameter refer to the "General technical data - Construction" table.


Size		190.0	200.0	210.0	230.0
Length	mm	5670	5670	5670	5670
Depth	mm	2230	2230	2230	2230
Height	mm	2400	2400	2400	2400
W1 Supporting point	kg	277	279	285	306
W2 Supporting point	kg	272	278	281	304
W3 Supporting point	kg	268	275	279	300
W4 Supporting point	kg	277	279	285	306
W5 Supporting point	kg	272	278	281	304
W6 Supporting point	kg	268	275	279	300
Operating weight	kg	1634	1664	1690	1820
Shipping weight	kg	1604	1634	1660	1790

The presence of optional accessories may result in a substantial variation of the weights shown in the table.

M04W40N16-02

Size 240.0 - 280.0

DAA5W240.0_280.0_0 Date: 13/09/2016

- 2. Antivibration fixing holes ø 18mm
- 3. Lifting brackets (removable)
- 4. General electrical panel
- 5. Power input

- 7. Circuit 1 liquid line
- 8. Circuit 1 gas line
- 9. Circuit 2 gas line
- 10. Circuit 2 liquid line

For the measurement of the refrigeration connection diameter refer to the "General technical data - Construction" table.

Size		240.0	280.0
Length	mm	6650	6650
Depth	mm	2230	2230
Height	mm	2400	2400
W1 Supporting point	kg	297	328
W2 Supporting point	kg	293	324
W3 Supporting point	kg	289	320
W4 Supporting point	kg	297	328
W5 Supporting point	kg	293	324
W6 Supporting point	kg	289	320
Operating weight	kg	1758	1944
Shipping weight	kg	1728	1914

The presence of optional accessories may result in a substantial variation of the weights shown in the table.

74

CLIVET SPA

Via Camp Lonc 25, Z.I. Villapaiera - 32032 Feltre (BL) - Italy Tel. + 39 0439 3131 - Fax + 39 0439 313300 - info@clivet.it

CLIVET GROUP UK Limited

Units F5&F6 Railway Triangle Ind Est, Walton Road - Portsmouth, Hampshire - PO6 1TG - United Kingdom Tel. + 44 (0) 1489 572238 - Fax. +44 (0) 2392 381243 - enquiries@clivetgroup.co.uk

CLIVET ESPAÑA S.A.U.

C/ Bac de Roda, 36 - 08019 Barcelona - España Tel: +34 93 8606248 - Fax +34 93 8855392 - info@clivet.es

Av.Manoteras Nº 38, Oficina C303 - 28050 Madrid - España Tel. +34 91 6658280 - Fax +34 91 6657806 - info@clivet.es

CLIVET GmbH

Hummelsbütteler Steindamm 84, 22851 Norderstedt - Germany Tel. + 49 (0) 40 32 59 57-0 - Fax + 49 (0) 40 32 59 57-194 - info.de@clivet.com

CLIVET RUSSIA

Elektrozavodskaya st. 24, office 509 - 107023, Moscow, Russia Tel. + 74956462009 - Fax + 74956462009 - info.ru@clivet.com

CLIVET MIDEAST FZCO

Dubai Silicon Oasis (DSO), High Bay Complex, Office N. 20, PO BOX 342009, Dubai, UAE Tel. + 9714 3208499 - Fax + 9714 3208216 - info@clivet.ae

CLIVET AIRCONDITIONING SYSTEMS PRIVATE LIMITED

501/502, Commercial-1, Kohinoor City, Old Premier Compound, Kirol Road, Off L B S Marg, Kurla West - Mumbai 400 070 - India Tel. +91 22 30930250 - info.in@clivet.com

www.clivet.com www.clivetlive.com

