

Direct expansion indoor unit for VRF

2-way cassette Q2DN-3-XY D22-D71

TECHNICAL BULLETTIN

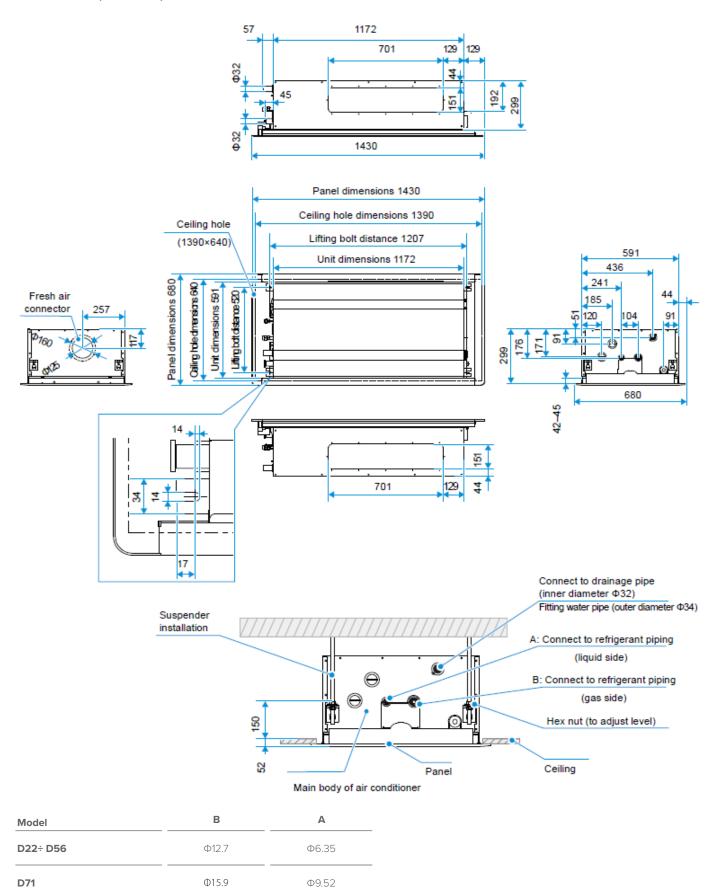
SIZE	D22	D28	D36	D45	D56	D71
COOLING CAPACITY kW	2.2	2.8	3.6	4.5	5.6	7.1
HEATING CAPACITY kW	2.6	3.2	4.0	5.0	6.3	8.0

General technical data

Model			Q2DN-3-XY D22	Q2DN-3-XY D28	Q2DN-3-XY D36				
Power supply			1-phase, 220-240V, 50Hz						
	Consoite	kW	2.2	2.8	3.6				
Cooling ¹	Capacity	kBtu/h	7.5	9.6	12.3				
	Power input	W	35	40	40				
	Compatible	kW	2.6	3.2	4				
Heating ²	Capacity	kBtu/h	8.9	10.9	13.6				
	Power input	W	35	40	40				
Fan matar tuna	Туре			DC					
Fan motor type	Number			1					
	Number of rows			1					
	Tube pitch × row pitch	mm		21×13.37					
	Fin spacing	mm		1.5					
Indoor coil	Fin type			Hydrophilic aluminum					
	Tube OD and type	mm	Φ7 Inner-groove						
	Dimensions (L×H×W)	mm							
	Number of circuits			4					
Air flow rate ³		m³/h	654/612/571/5	30/488/449/410	725/679/641/591/554 /509/458				
Sound pressure le	vel ⁴	dB(A)	33/31/30/2	29/27/25/24	35/33/32/30/29/27/25				
Sound power leve	 5	dB(A)	49/47/46/-	49/47/46/45/43/41/40					
	Net dimensions ⁶ (W×H×D)	mm		1172×299×591					
Main body	Packed dimensions (W×H×D)	mm		1355×400×675					
	Net/Gross weight	kg		29.7/36.3					
	Net dimensions (W×H×D)	mm		1430×53×680					
Panel	Packed dimensions (W×H×D)	mm		1525×130×765					
	Net/Gross weight	kg		11/15					
Refrigerant type				R410A/R32					
Design pressure (F		MPa		4.4/2.6					
Dina connections	Liquid/Gas pipe	mm		Φ6.35/Φ12.7					
Pipe connections	Drain pipe	mm		OD Φ32					

Notes:

- $1. \hspace{1.5cm} Indoor \, temperature \, 27^{\circ}C \, DB, \, 19^{\circ}C \, WB; \, outdoor \, temperature \, 35^{\circ}C \, DB; \, equivalent \, refrigerant \, piping \, length \, 7.5m \, with \, zero \, level \, difference.$
- 2. Indoor temperature 20°C DB; outdoor temperature 7°C DB, 6°C WB; equivalent refrigerant piping length 7.5m with zero level difference.
- 3. Air flow rate are from the highest speed to the lowest speed, total 7 rates for each model.
- 4. Sound pressure level is from highest level to lowest level, total 7 levels for each model. Sound pressure level is measured 1.4m below the unit in a anechoic chamber.
- 5. Sound power level is from highest level to lowest level, total 7 levels for each model.
- 6. The dimension is only the body size, excluding the size of the installation lug, connecting copper pipe, etc. For detailed dimensions, please refer to the installation manual.

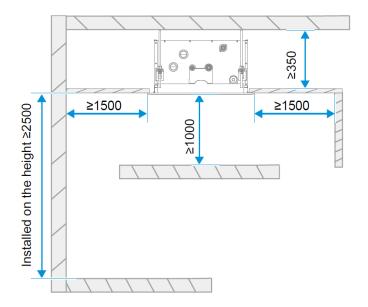

General technical data

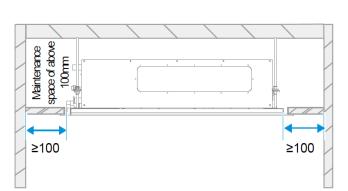
Model			Q2DN-3-XY D45	Q2DN-3-XY D56	Q2DN-3-XY D71				
Power supply			1-phase, 220-240V, 50Hz						
	Capacity	kW	4.5	7.1					
Cooling ¹	Cooling¹ Power input		15.4	19.1	24.2				
			50	69	98				
	Canacity	kW	5	6.3	8				
Heating ²	Capacity	kBtu/h	17.1	21.5	27.3				
	Power input	W	50	69	98				
Fan motor type	Туре			DC					
ran motor type	Number			1					
	Number of rows			2					
	Tube pitch × row pitch	mm		21×13.37					
	Fin spacing	mm		1.5					
Indoor coil	Fin type			Hydrophilic aluminum					
	Tube OD and type	mm	Φ7 Inner-groove						
	Dimensions (L×H×W)	mm		882×210×26.74					
	Number of circuits		6						
Air flow rate ³		m³/h	850/792/731/670/631 /592/550	980/925/855/800/755 /702/670	1200/1115/1068/1000 /921/808/770				
Sound pressure le	vel ⁴	dB(A)	37/36/35/34/32/31/30	39/37/36/35/33/31/30	44/42/41/40/38/36/34				
Sound power leve	[5	dB(A)	53/52/51/50/48/47/46	55/53/52/51/49/47/46	60/58/57/56/54/52/50				
	Net dimensions ⁶ (W×H×D)	mm		1172×299×591					
Main body	Packed dimensions (W×H×D)	mm		1355×400×675					
	Net/Gross weight	kg		31.6/38.2					
	Net dimensions (W×H×D)	mm		1430×53×680					
Panel	Packed dimensions (W×H×D)	mm	1525×130×765						
	Net/Gross weight	kg	11/15						
Refrigerant type				R410A/R32					
Design pressure (H	H/L)	MPa		4.4/2.6					
Dino connections	Liquid/Gas pipe	mm	Ф6.35	5/Φ12.7	Ф9.52/Ф15.9				
Pipe connections	Drain pipe	mm							

Notes:

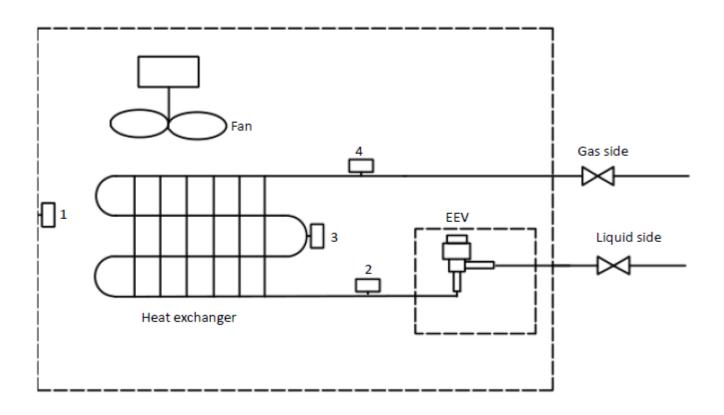
- 1. Indoor temperature 27°C DB, 19°C WB; outdoor temperature 35°C DB; equivalent refrigerant piping length 7.5m with zero level difference.
- 2. Indoor temperature 20°C DB; outdoor temperature 7°C DB, 6°C WB; equivalent refrigerant piping length 7.5m with zero level difference.
- 3. Air flow rate are from the highest speed to the lowest speed, total 7 rates for each model.
- 4. Sound pressure level is from highest level to lowest level, total 7 levels for each model. Sound pressure level is measured 1.4m below the unit in a anechoic chamber.
- 5. Sound power level is from highest level to lowest level, total 7 levels for each model.
- 6. The dimension is only the body size, excluding the size of the installation lug, connecting copper pipe, etc. For detailed dimensions, please refer to the installation manual.

Dimensions (unit: mm)

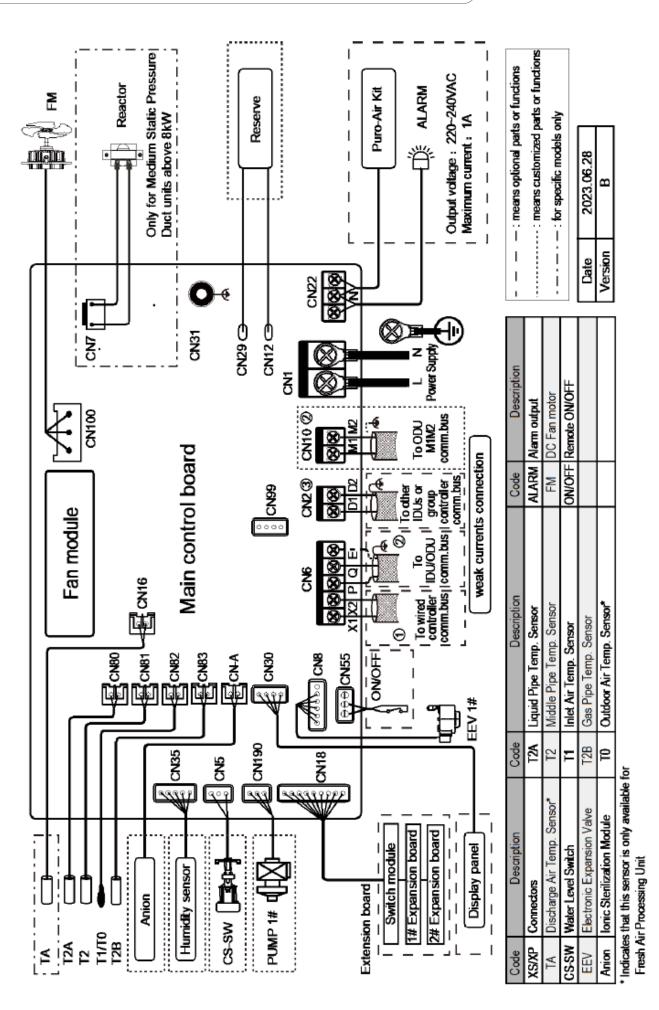

Unit placement


Placement Considerations

Unit placement should take account of the following considerations:


- Units should not be installed in the following locations:
 - A place filled with mineral oil, fumes or mist, like a kitchen.
 - A place where there are corrosive gases, such as acid or alkaline gases.
 - · A place exposed to combustible gases and using volatile combustible gases such as diluent or gasoline.
 - A place where there is equipment emitting electromagnetic radiation.
 - A place where there is a high salt content in the air like a coast.
 - Do not use the air conditioner in an environment where an explosion may occur.
 - Places like in vehicles or cabin rooms.
 - Factories with major voltage fluctuations in the power supplies.
 - · Other special environmental conditions.
- Units should be installed in positions where:
 - Ensure that the airflow in and out of the IDU is reasonably organized to form an air circulation in the room.
 - Ensure IDU maintenance space.
 - The nearer the drainage pipe and copper pipe are to the ODU, the lower the pipe cost is.
 - Prevent the air conditioner from blowing directly to the human body.
 - The closer the wiring to the power cabinet, the lower the wiring cost is.
 - Keep the air-conditioning return air away from the setting sun of the room.
 - Be careful not to interfere with the light tank, fire pipe, gas pipe and other facilities.
 - The IDU should not be lifted in the places like load-bearing beam and columns that affect the structural safety of the house.
 - The wired controller and the IDU should be in the same installation space; otherwise, the sampling point setting of the wired controller need to be changed.

Space requirements (unit: mm)



1. The centerline of the maintenance hole should be in the same position as the centerline of the indoor unit.

LEGEND		
1	T1	Inlet Air Temp. Sensor
2	T2A	Liquid Pipe Temp. Sensor
3	T2	Middle Pipe Temp. Sensor
4	T2B	Gas Pipe Temp. Sensor
5	EEV	Electronic Expansion Valve
6	FAN	DC Fan motor

Notes for installers and service engineers

Caution

- All installation, servicing and maintenance must be carried out by competent and suitably qualified, certified and accredited professionals and in accordance with all applicable legislation.
- Units should be grounded in accordance with all applicable legislation. Metal and other conductive components should be insulated in accordance with all applicable legislation.
- Power supply wiring should be securely fastened at the power supply terminals loose power supply wiring would represent a fire
 risk.
- After installation, servicing or maintenance, the electric control box cover should be closed. Failing to close the electric control box cover risks fire or electric shock.
- The dotted lines indicate the field wiring or optional function
- D1D2 communication ports are used for group control communication. When connecting the group controller, the D1D2 port of the
 indoor units that are to be group controlled must be connected in daisy chain, and the group controller must be connected to the
 X1X2 port of one of the indoor units in the group control, and set to group control mode. In addition, D1D2 communication ports can
 also be connected to the central controller.

Capacity Tables

Cooling Capacity Table

Indoor air temperature (°C WB/DB)

14	/20	16	/23	18.	/26	19	/27	20	/28	22	/30	24	/32
TC	SC	TC	SC	TC	sc	TC	SC	TC	SC	TC	SC	тс	SC
2.0	1.9	2.1	2.0	2.2	2.0	2.2	1.9	2.3	1.9	2.3	1.7	2.4	1.7
2.5	2.4	2.7	2.6	2.8	2.5	2.8	2.4	2.9	2.4	2.9	2.2	3.0	2.1
3.2	3.1	3.4	3.2	3.6	3.3	3.6	3.1	3.7	3.0	3.8	2.9	3.9	2.7
4.0	3.8	4.3	3.9	4.5	3.9	4.5	3.8	4.6	3.7	4.7	3.5	4.8	3.3
5.0	4.8	5.3	4.8	5.6	4.9	5.6	4.7	5.7	4.6	5.8	4.3	6.0	4.1
6.3	6.0	6.7	6.1	7.0	6.2	7.1	6.0	7.2	5.8	7.4	5.5	7.6	5.2
	2.0 2.5 3.2 4.0 5.0	2.0 1.9 2.5 2.4 3.2 3.1 4.0 3.8 5.0 4.8	TC SC TC 2.0 1.9 2.1 2.5 2.4 2.7 3.2 3.1 3.4 4.0 3.8 4.3 5.0 4.8 5.3	TC SC TC SC 2.0 1.9 2.1 2.0 2.5 2.4 2.7 2.6 3.2 3.1 3.4 3.2 4.0 3.8 4.3 3.9 5.0 4.8 5.3 4.8	TC SC TC SC TC 2.0 1.9 2.1 2.0 2.2 2.5 2.4 2.7 2.6 2.8 3.2 3.1 3.4 3.2 3.6 4.0 3.8 4.3 3.9 4.5 5.0 4.8 5.3 4.8 5.6	TC SC TC SC TC SC 2.0 1.9 2.1 2.0 2.2 2.0 2.5 2.4 2.7 2.6 2.8 2.5 3.2 3.1 3.4 3.2 3.6 3.3 4.0 3.8 4.3 3.9 4.5 3.9 5.0 4.8 5.3 4.8 5.6 4.9	TC SC TC SC TC SC TC 2.0 1.9 2.1 2.0 2.2 2.0 2.2 2.5 2.4 2.7 2.6 2.8 2.5 2.8 3.2 3.1 3.4 3.2 3.6 3.3 3.6 4.0 3.8 4.3 3.9 4.5 3.9 4.5 5.0 4.8 5.3 4.8 5.6 4.9 5.6	TC SC TC SC TC SC 2.0 1.9 2.1 2.0 2.2 2.0 2.2 1.9 2.5 2.4 2.7 2.6 2.8 2.5 2.8 2.4 3.2 3.1 3.4 3.2 3.6 3.3 3.6 31 4.0 3.8 4.3 3.9 4.5 3.9 4.5 3.8 5.0 4.8 5.3 4.8 5.6 4.9 5.6 4.7	TC SC TC SC TC SC TC 2.0 1.9 2.1 2.0 2.2 2.0 2.2 1.9 2.3 2.5 2.4 2.7 2.6 2.8 2.5 2.8 2.4 2.9 3.2 3.1 3.4 3.2 3.6 3.3 3.6 3.1 3.7 4.0 3.8 4.3 3.9 4.5 3.9 4.5 3.8 4.6 5.0 4.8 5.3 4.8 5.6 4.9 5.6 4.7 5.7	TC SC TC SC<	TC SC TC SC TC SC TC SC TC SC TC SC TC TC<	TC SC TC SC<	TC SC TC SC<

Abbreviations:

TC: Total capacity (kW)

SC: Sensible capacity(kW)

1.Shaded cells indicate rating condition.

Heating Capacity Table

Indoor air temperature (°C DB)

maoor an temperature (O DD)								
MODEL	16	18	20	21	22	24		
	TC	TC	тс	TC	TC	тс		
Q2DN-3-XY D22	2.8	2.8	2.6	2.5	2.4	2.3		
Q2DN-3-XY D28	3.4	3.4	3.2	3.1	3.0	2.8		
Q2DN-3-XY D36	4.2	4.2	4.0	3.8	3.8	3.5		
Q2DN-3-XY D45	5.3	5.3	5.0	4.8	4.7	4.4		
Q2DN-3-XY D56	6.7	6.6	6.3	6.1	5.9	5.5		
Q2DN-3-XY D71	8.5	8.4	8.0	7.8	7.5	7.0		

Abbreviations: TC: Total capacity (kW)

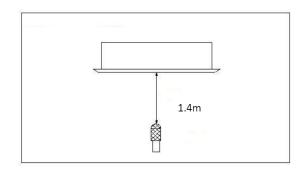
1.Shaded cells indicate rating condition.

			Indoor fan motors					
MODEL	Hz	Volts	Min. volts	Max. volts	MCA	MFA	Rated motor output (kW)	FLA
Q2DN-3-XY D22	50	220-240	198	242	0.47	15	50	0.38
Q2DN-3-XY D28	50	220-240	198	242	0.47	15	50	0.38
Q2DN-3-XY D36	50	220-240	198	242	0.52	15	50	0.42
Q2DN-3-XY D45	50	220-240	198	242	0.59	15	50	0.47
Q2DN-3-XY D56	50	220-240	198	242	0.9	15	50	0.72
Q2DN-3-XY D71	50	220-240	198	242	1.3	15	50	1.04

Abbreviations:

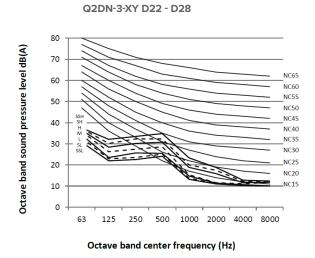
MCA: Minimum Circuit Amps MFA: Maximum Fuse Amps FLA: Full Load Amps

Voltage range: Units are suitable for use on electrical systems where voltage supplied to unit terminals is not below or above listed range limits.


 $\label{thm:maximum allowable voltage variation between phases is 2\%.$

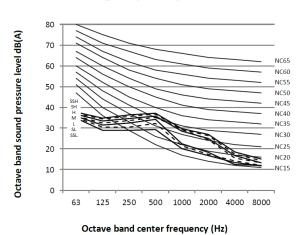
Selection wire size based on the value of MCA.

MFA is used to select the circuit breaker and the ground fault circuit interrupter (earth circuit breaker).


Overall

MODEL	Sound pressure levels dB							
MODEL	SSH	SH	Н	M	L	SL	SSL	
Q2DN-3-XY D22	33	31	30	29	27	25	24	
Q2DN-3-XY D28	33	31	30	29	27	25	24	
Q2DN-3-XY D36	35	33	32	30	29	27	25	
Q2DN-3-XY D45	37	36	35	34	32	31	30	
Q2DN-3-XY D56	39	37	36	35	33	31	30	
Q2DN-3-XY D71	44	42	41	40	38	36	34	

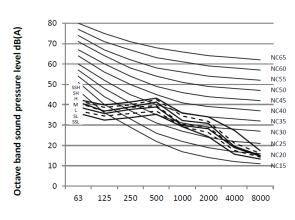
Notes:


Octave Band Levels


Q2DN-3-XY D36 80 Octave band sound pressure level dB(A) 70 NC65 60 NC60 NC55 50 NC50 NC45 40 NC40 NC35 30 NC30 NC25 20 NC20 NC15 10 0 1000 2000 4000 8000

^{1.} Sound pressure levels are measured 1.4m below the unit in a semi-anechoic chamber at 0 Pa static pressure. During in-situ operation, sound pressure levels may be higher as a result of ambient noise.

Q2DN-3-XY D45

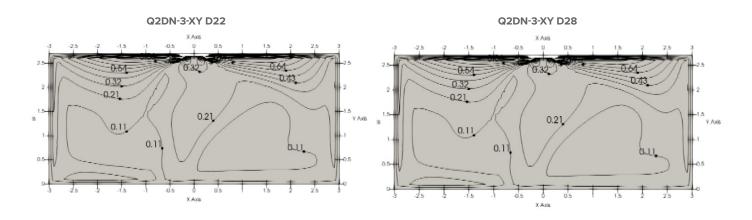


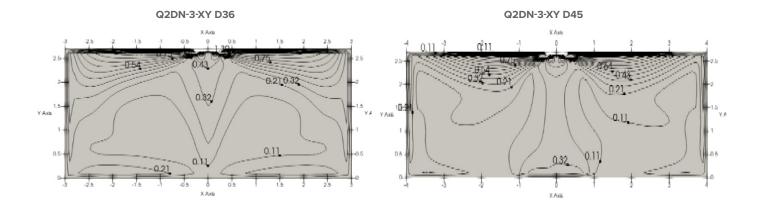
Q4AN-3-XY D56

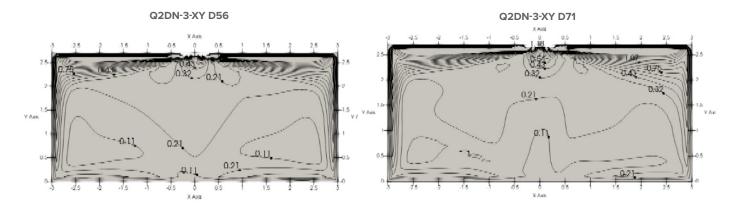
Octave band center frequency (Hz)

Q2DN-3-XY D71

Octave band center frequency (Hz)

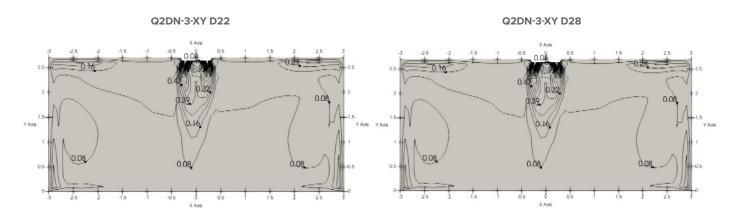

Temperature and Airflow Distributions

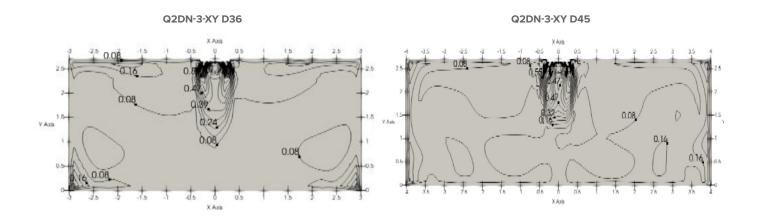

Simulate condition

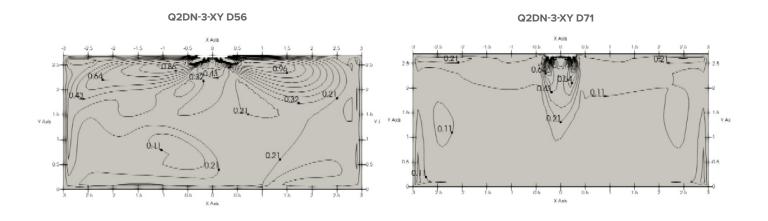

MODEL NAME	Room size (m)	Ceiling height (m)	Flow angle (Cooling/Hea- ting)	Placing
Q2DN-3-XY D22	6*6	2.7	35°/55°	Cassette
Q2DN-3-XY D28	6*6	2.7	35°/55°	Cassette
Q2DN-3-XY D36	6*6	2.7	35°/55°	Cassette
Q2DN-3-XY D45	8*8	2.7	35°/55°	Cassette
Q2DN-3-XY D56	8*8	2.7	35°/55°	Cassette
Q2DN-3-XY D71	8*8	2.7	35°/55°	Cassette

Note

Airflow distributions - Cooling (after 300s)

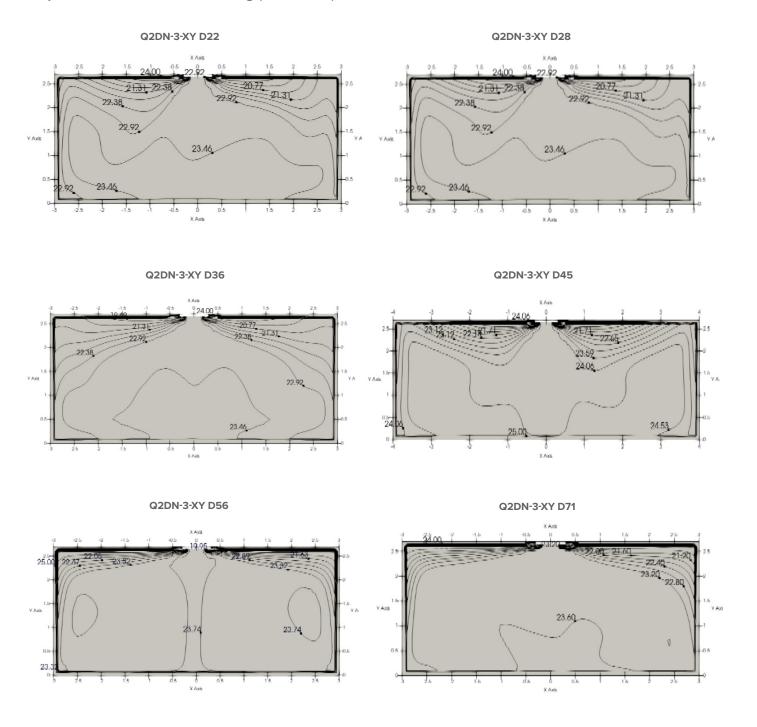


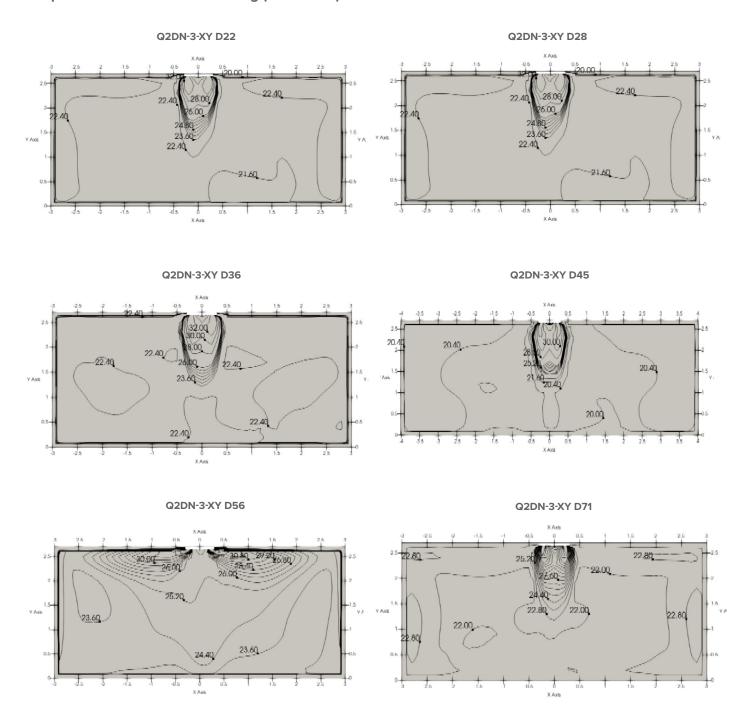



^{1.} These figures and videos are based on software simulation. They show typical temperature and airflow distributions in the conditions above. In the actual installation, they may differ from these figures and videos under the influence of air temperature conditions, ceiling height, cooling/heating load, obstacles, etc.

Temperature and Airflow Distributions

Airflow distributions - Heating (after 300s)





Temperature and Airflow Distributions

Temperature distributions - Cooling (after 300s)

Temperature distributions - Heating (after 300s)

FOR 30 YEARS WE HAVE BEEN OFFERING SOLUTIONS FOR SUSTAINABLE COMFORT AND THE WELL-BEING OF PEOPLE AND THE ENVIRONMENT

www.clivet.com

MideaGroup humanizing technology

.CLIVET S.p.A

Via Camp Lonc 25, Z.I. Villapaiera 32032 - Feltre (BL) - Italy Tel. +39 0439 3131 - info@clivet.it

CLIVET GMBH

Hummelsbütteler Steindamm 84, 22851 Norderstedt, Germany Tel. +49 40 325957-0 - info.de@clivet.com

Clivet Group UK LTD

Units F5 & F6 Railway Triangle, Portsmouth, Hampshire PO6 1TG Tel. +44 02392 381235 Enquiries@Clivetgroup.co.uk

CLIVET LLC

Office 508-511, Elektozavodskaya st. 24, Moscow, Russian Federation, 107023 Tel. +7495 6462009 - info.ru@clivet.com

CLIVET MIDEAST FZCO

Dubai Silicon Oasis (DSO) Headquarter Building, Office EG-05, P.O Box-342009, Dubai, UAE Tel. +9714 3208499 - info@clivet.ae

Clivet South East Europe

10000, Zagreb, Croatia

Tel. +3851 222 8784 - info.see@clivet.com

CLIVET France

10, rue du Fort de Saint Cyr - 78180 Montigny le Bretonneux, France info.fr@clivet.com

Clivet Airconditioning Systems Pvt Ltd Office No.501 & 502,5th Floor, Commercial –I, Kohinoor City, Old Premier Compound, Off LBS Marg, Kirol Road, Kurla West, Mumbai Maharashtra 400070, India

Tel. +91 22 30930200 - sales.india@clivet.com

BT23N007GB-Q2DN-3-XY D22-D71-Way